
총 23개
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13
-
다음은 초기값 1에서 고정점 반복법을 이용하여 ~의 근을 구하는 파이썬코드이다. 다음 질문에 답하시오.2025.01.151. 고정점 반복법 고정점 반복법은 수치해석 기법 중 하나로, 함수 f(x)=x^3-x-1의 근을 구하는 데 사용됩니다. 이 방법은 초기값 1에서 시작하여 반복적으로 계산을 수행하여 근사해를 찾아내는 방식입니다. 2. 파이썬 코드 제시된 파이썬 코드는 고정점 반복법을 이용하여 f(x)=x^3-x-1의 근을 구하는 것을 보여줍니다. 이 코드에는 몇 가지 빈칸이 있으며, 이를 채워 코드를 완성하고 결과를 도출하는 것이 과제의 내용입니다. 1. 고정점 반복법 고정점 반복법은 비선형 방정식을 해결하는 데 사용되는 반복적인 수치 해석 기법입...2025.01.15
-
조정다각형과 재귀식을 활용한 Bezier 곡선 교점 구하기2025.01.291. Bezier 곡선 Bezier 곡선은 컴퓨터 그래픽스 분야에서 널리 사용되는 곡선 표현 방식입니다. 이 문제에서는 두 Bezier 곡선의 교점을 구하는 방법을 설명합니다. 조정다각형이 겹치면 Bezier 곡선을 반으로 나누고 나눈 곡선들의 조정다각형을 비교하여 교점을 찾습니다. 재귀함수를 사용해서 조정다각형의 크기가 매우 작을 때까지 루프를 반복합니다. 2. 조정다각형 조정다각형은 Bezier 곡선을 정의하는 데 사용되는 다각형입니다. 이 문제에서는 두 Bezier 곡선의 조정다각형을 비교하여 교점을 찾는 방법을 설명합니다. ...2025.01.29
-
신호및시스템(건국대) 9주차과제2025.01.171. 신호 및 시스템 이 과제는 신호 및 시스템 수업의 9주차 과제로, 주기 신호 생성, 푸리에 급수 함수 개발, 복소 계수 계산 및 도시, 부분 푸리에 급수를 이용한 신호 재구성 등의 내용을 다루고 있습니다. 이를 통해 신호 및 시스템 분석 기술을 익히고 응용할 수 있습니다. 2. 푸리에 급수 이 과제에서는 FourierSeries.m 함수를 개발하여 복소 푸리에 계수를 계산하고, 그 크기, 실수부, 허수부를 도시하는 작업을 수행합니다. 또한 부분 푸리에 급수를 이용하여 원 신호를 재구성하고 비교하는 내용이 포함되어 있습니다. 이...2025.01.17
-
난류 채널 유동 내 역류 현상에 대한 횡방향 도메인 크기 영향2024.12.311. 난류 채널 유동 논문에서는 난류 채널 유동 내에서 발생하는 역류 현상에 대해 연구했습니다. 직접수치모사 기법을 사용하여 횡방향 도메인 크기가 역류 영역의 크기에 미치는 영향을 분석했습니다. 연구 결과, 횡방향 도메인 크기가 증가할수록 유동 방향과 횡방향으로 더 큰 역류 영역이 발생하는 것을 확인했습니다. 이를 통해 난류 채널 유동의 라지 스케일 유동 구조 해상도가 역류 현상에 영향을 미친다는 사실을 밝혀냈습니다. 2. 직접수치모사 기법 논문에서는 직접수치모사 기법을 사용하여 난류 채널 유동 내 역류 현상을 분석했습니다. 직접수...2024.12.31
-
AI가 이처럼 발달했는데 왜 이렇게 일기예보는 틀릴까?2025.01.181. 기상 예보의 정확성 향상 현대 과학 기술의 발전에도 불구하고 일기예보가 여전히 틀리는 이유는 기상 시스템의 복잡성과 예측의 불확실성 때문이다. 최근 구글 딥마인드의 AI 모델 GraphCast가 이러한 문제를 해결할 수 있다고 알려졌지만, 실제로는 AI와 전통적인 수치해석 방법의 장단점을 이해하고 이를 결합하는 것이 중요하다. AI는 빠르고 효율적인 데이터 처리와 높은 정확도를 보이지만, 학습되지 않은 상황에서는 성능이 저하될 수 있다. 반면 수치해석 방법은 물리 법칙에 기반하여 신뢰성 있는 결과를 제공할 수 있지만, 많은 계...2025.01.18
-
몬테카를로 시뮬레이션으로 원의 면적 구하기 (파이썬코드예제 포함)2025.05.091. 몬테카를로 시뮬레이션 몬테카를로 추정(Monte Carlo estimation)은 통계학과 컴퓨터 과학 등 다양한 분야에서 널리 사용되는 추정 방법 중 하나입니다. 이 방법은 통계적인 시뮬레이션을 통해 확률적인 모델링을 수행하여 원하는 값을 추정하는 방식으로 작동합니다. 몬테카를로 추정은 랜덤 샘플링과 통계적 분석을 결합하여 정확한 결과를 얻기 어려운 문제를 해결하는 데 유용하게 사용됩니다. 2. 원의 면적 구하기 원의 면적을 구하기 위해서는 원 안에 몬테카를로 시뮬레이션으로 생성된 점들 중 원 안에 속하는 점들의 비율을 계산...2025.05.09
-
자연대류 현상 관찰 및 분석2025.01.291. 자연대류 자연대류는 유체의 온도 차이로 인해 발생하는 유체 운동을 말한다. 온도가 높은 벽면에서 유체가 가벼워져 상승하고, 차가운 벽면에서 유체가 무거워져 하강하는 순환 운동이 발생한다. 이러한 자연대류 현상을 계산 영역 내에서 관찰하고 분석하였다. 2. 레일리 수 레일리 수는 유체 사이의 열 전달과 관련된 무차원 수로, 임계값보다 작으면 열이 전도 형태로 전달되고 임계값보다 크면 대류 형태로 전달된다. 본 실험에서는 레일리 수 16,219와 50,000에 대해 분석하였으며, 50,000에서는 불규칙한 난류 형태가 관찰되었다....2025.01.29
-
파이썬으로 수행하는 공정시뮬레이션 기법 I2025.01.031. 공정 시뮬레이션 공정 시뮬레이션은 실험 결과를 수식화하여 일반화하거나, 다양한 변수의 영향을 관찰하여 최적의 조건을 찾는 데 사용됩니다. 상용 패키지 프로그램은 복잡한 식을 동시에 풀어낼 수 있지만, 특정 현상에 제한적일 수 있습니다. 따라서 개인이 직접 시뮬레이션 프로그램을 개발하는 것이 중요합니다. 이를 위해서는 다양한 물리화학적 현상을 동시에 고려할 수 있는 능력이 필요합니다. 2. 파이썬을 이용한 시뮬레이션 파이썬을 이용하여 시뮬레이션을 수행할 때, 변수 설정과 결과값 비교가 중요합니다. 수치적 변수와 반응경로와 같은 ...2025.01.03
-
전산구조해석 과제 82025.04.251. FEM FEM(유한요소법)은 복잡한 구조물의 응력, 변형 등을 해석하는 수치해석 기법입니다. 이 과제에서는 FEM을 이용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 2. 구조해석 이 과제는 구조물의 전산 구조해석 과정을 다루고 있습니다. 유한요소법을 활용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 3. 강성 행렬 구조물의 강성 행렬은 구조물의 강성을 나타내는 행렬로, 이를 통해 하중에 따른 변형을 계산할 수 있습니다. 이 과제에서는...2025.04.25