총 2개
-
Data Preparation2025.01.131. Feature Extraction and Portability Feature extraction은 다양한 출처(센서, 이미지, 웹 기록, 침입감지, 문서 등)에서 데이터를 얻는 것을 말한다. Portability는 다른 유형으로 데이터를 변환하는 것을 말한다. 포터빌리티의 예로는 이산화, 이진화, LSA, SAX, DWT, DFT 등이 있다. 이러한 변환 방법들은 데이터의 크기를 줄이거나 다른 형태로 표현하는 데 사용된다. 2. Data Cleaning 데이터 클리닝은 누락되거나 오류가 있는 데이터를 제거하는 것을 말한다. 누...2025.01.13
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13