
총 23개
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13
-
다음은 초기값 1에서 고정점 반복법을 이용하여 ~의 근을 구하는 파이썬코드이다. 다음 질문에 답하시오.2025.01.151. 고정점 반복법 고정점 반복법은 수치해석 기법 중 하나로, 함수 f(x)=x^3-x-1의 근을 구하는 데 사용됩니다. 이 방법은 초기값 1에서 시작하여 반복적으로 계산을 수행하여 근사해를 찾아내는 방식입니다. 2. 파이썬 코드 제시된 파이썬 코드는 고정점 반복법을 이용하여 f(x)=x^3-x-1의 근을 구하는 것을 보여줍니다. 이 코드에는 몇 가지 빈칸이 있으며, 이를 채워 코드를 완성하고 결과를 도출하는 것이 과제의 내용입니다. 1. 고정점 반복법 고정점 반복법은 비선형 방정식을 해결하는 데 사용되는 반복적인 수치 해석 기법입...2025.01.15
-
난류 채널 유동 내 역류 현상에 대한 횡방향 도메인 크기 영향2024.12.311. 난류 채널 유동 논문에서는 난류 채널 유동 내에서 발생하는 역류 현상에 대해 연구했습니다. 직접수치모사 기법을 사용하여 횡방향 도메인 크기가 역류 영역의 크기에 미치는 영향을 분석했습니다. 연구 결과, 횡방향 도메인 크기가 증가할수록 유동 방향과 횡방향으로 더 큰 역류 영역이 발생하는 것을 확인했습니다. 이를 통해 난류 채널 유동의 라지 스케일 유동 구조 해상도가 역류 현상에 영향을 미친다는 사실을 밝혀냈습니다. 2. 직접수치모사 기법 논문에서는 직접수치모사 기법을 사용하여 난류 채널 유동 내 역류 현상을 분석했습니다. 직접수...2024.12.31
-
신호및시스템(건국대) 9주차과제2025.01.171. 신호 및 시스템 이 과제는 신호 및 시스템 수업의 9주차 과제로, 주기 신호 생성, 푸리에 급수 함수 개발, 복소 계수 계산 및 도시, 부분 푸리에 급수를 이용한 신호 재구성 등의 내용을 다루고 있습니다. 이를 통해 신호 및 시스템 분석 기술을 익히고 응용할 수 있습니다. 2. 푸리에 급수 이 과제에서는 FourierSeries.m 함수를 개발하여 복소 푸리에 계수를 계산하고, 그 크기, 실수부, 허수부를 도시하는 작업을 수행합니다. 또한 부분 푸리에 급수를 이용하여 원 신호를 재구성하고 비교하는 내용이 포함되어 있습니다. 이...2025.01.17
-
몬테카를로 시뮬레이션으로 원의 면적 구하기 (파이썬코드예제 포함)2025.05.091. 몬테카를로 시뮬레이션 몬테카를로 추정(Monte Carlo estimation)은 통계학과 컴퓨터 과학 등 다양한 분야에서 널리 사용되는 추정 방법 중 하나입니다. 이 방법은 통계적인 시뮬레이션을 통해 확률적인 모델링을 수행하여 원하는 값을 추정하는 방식으로 작동합니다. 몬테카를로 추정은 랜덤 샘플링과 통계적 분석을 결합하여 정확한 결과를 얻기 어려운 문제를 해결하는 데 유용하게 사용됩니다. 2. 원의 면적 구하기 원의 면적을 구하기 위해서는 원 안에 몬테카를로 시뮬레이션으로 생성된 점들 중 원 안에 속하는 점들의 비율을 계산...2025.05.09
-
매트랩(Matlab)활용한 이공계열 학습의 활용 방안에 대한 고찰 - 실제 학습 예제들을 중심으로- (version cire)2025.04.261. 다변수 함수 그래프 시각화 이 코드는 다변수 함수의 그래프를 시각화하는 방법을 보여줍니다. 먼저 x 벡터를 만들고, y를 x와 1대1 대응되도록 만듭니다. 그 다음 meshgrid() 함수를 사용하여 정의역을 만들고, 다변수 함수 식을 코딩에 맞게 변환한 후 surf() 함수를 사용하여 그래프를 그립니다. 2. 다항식의 최적함수피팅, 최대값, 최솟값 찾기 이 코드는 특정한 유한개의 점들로 n-1차 다항식을 만들고, 그 곡선의 최대값과 최소값을 찾는 방법을 보여줍니다. 최소자승법과 polyfit(), polyval(), poly...2025.04.26
-
AI가 이처럼 발달했는데 왜 이렇게 일기예보는 틀릴까?2025.01.181. 기상 예보의 정확성 향상 현대 과학 기술의 발전에도 불구하고 일기예보가 여전히 틀리는 이유는 기상 시스템의 복잡성과 예측의 불확실성 때문이다. 최근 구글 딥마인드의 AI 모델 GraphCast가 이러한 문제를 해결할 수 있다고 알려졌지만, 실제로는 AI와 전통적인 수치해석 방법의 장단점을 이해하고 이를 결합하는 것이 중요하다. AI는 빠르고 효율적인 데이터 처리와 높은 정확도를 보이지만, 학습되지 않은 상황에서는 성능이 저하될 수 있다. 반면 수치해석 방법은 물리 법칙에 기반하여 신뢰성 있는 결과를 제공할 수 있지만, 많은 계...2025.01.18
-
수치해석을 AI로 해보자 (파이썬 예제코드 포함)2025.01.191. 수치해석 수치해석은 복잡한 수학적 문제를 컴퓨터를 사용하여 근사적으로 해결하는 방법을 의미합니다. 이는 이론적으로는 해를 구할 수 있지만, 실제로는 계산이 어려운 문제들을 다루기 위해 발전된 분야입니다. 수치해석은 물리학, 공학, 금융 등 다양한 분야에서 널리 사용되며, 복잡한 방정식과 모델을 해결하는데 중요한 역할을 합니다. 2. AI와 수치해석의 차이점 AI는 이미지 인식, 자연어 처리, 음성 인식 등 다양한 분야에서 놀라운 성과를 이루어냈습니다. 이러한 성과는 AI가 복잡한 패턴을 인식하고 학습하는 능력 덕분입니다. 그러...2025.01.19
-
한양대학교 수치해석 matlab 과제2025.04.261. 수치해석 이 과제는 수치해석 4장에 대한 과제로, MATLAB을 이용하여 문제를 해결하였다. 첫 번째 문제에서는 주어진 수식을 변형하여 1차식으로 만들고, 여러 시행착오 끝에 a 값에 4를 곱해주어 주어진 데이터에 더 근사한 그래프를 얻을 수 있었다. 두 번째 문제에서는 여러 형태의 함수가 합쳐진 복잡한 함수를 이용하여 그래프를 구하였고, 결정계수가 1에 가까운 비교적 정확한 그래프를 얻을 수 있었다. 전반적으로 복잡한 함수를 이용하는 것이 단일 함수를 이용하는 것보다 오차가 적고 결정계수가 1에 가까운 것을 확인할 수 있었다...2025.04.26
-
인천대학교 수치해석 MatLab2025.04.251. Cubic spline interpolation을 이용한 삼성전자 주가 예측 3차 spline 보간법을 적용하여 삼성전자 주가 데이터와 보간선 그래프를 그렸습니다. 최초 날짜인 4월 21일을 0으로 두고 하루가 지날 때마다 x축에서 1씩 증가하도록 설정했습니다. 최종 날짜인 7월 6일은 최초 날짜를 기준으로 76일이 지났기 때문에 x축의 범위는 0부터 76이 됩니다. 구하고자 하는 날은 4월 21일 기준으로 13일이 지났기 때문에 x=13의 값이 예측값이 됩니다. 예측값은 2,244,435원으로 실제값인 2,276,000원과의...2025.04.25