
총 381개
-
전자회로실험 과탑 A+ 예비 보고서 (실험 2 정류회로)2025.01.291. 정류회로 정류회로는 교류 전압을 직류 전압으로 변환하는 중요한 회로이다. 반파 정류회로, 전파 정류회로, 브리지 정류회로 등 다양한 정류회로 구조가 있으며, 각각의 동작 원리와 입출력 특성이 다르다. 반파 정류회로는 한 주기의 절반만 정류하지만 구조가 간단하고, 전파 정류회로와 브리지 정류회로는 전체 주기를 정류하여 효율이 높다. 또한 필터 커패시터를 추가하면 리플이 감소하는 피크 정류회로를 구현할 수 있다. 이러한 정류회로의 특성을 이해하고 실험을 통해 확인하는 것이 중요하다. 1. 정류회로 정류회로는 교류 전압을 직류 전압...2025.01.29
-
전자회로실험 과탑 A+ 예비 보고서 (실험 3 정전압 회로와 리미터)2025.01.291. PN 접합 다이오드를 이용한 전압 레귤레이터 PN 접합 다이오드를 이용한 전압 레귤레이터는 부하 저항과 병렬로 다이오드를 연결하여, 입력 전압이나 부하 전류의 변화에도 출력 전압이 크게 변화하지 않도록 설계된 회로입니다. 입력 전압이 변하더라도 다이오드의 특성에 의해 출력 전압의 변화가 제한되기 때문입니다. PSpice를 이용하여 입력 전압의 변화와 부하 전류의 변화에 따른 출력의 변화를 모의실험하였습니다. 2. 제너 다이오드를 이용한 전압 레귤레이터 제너 다이오드를 이용한 전압 레귤레이터는 PN 접합 다이오드와 유사한 동작 ...2025.01.29
-
전자회로실험 과탑 A+ 결과 보고서 (실험 2 정류회로)2025.01.291. 반파 정류 회로 반파 정류 회로는 입력 교류 신호의 양의 반주기만을 이용하여 직류 성분을 출력으로 변환한다. 입력 전압 V_s의 양의 반주기 동안 다이오드 D_1이 forward biased되어 전류가 흐르고, 출력 전압 V_o가 생성된다. 반면 V_s가 음의 반주기일 때 다이오드는 reverse biased 상태가 되어 전류가 흐르지 않고 출력은 0이 된다. 2. 피크 정류 회로 피크 정류 회로는 입력 신호의 피크 값을 저장해 출력한다. 입력 전압 V_s의 양의 반주기 동안 다이오드 D_1이 forward biased되어 커...2025.01.29
-
전자회로실험 과탑 A+ 결과 보고서 (실험 22 연산 증폭기 특성)2025.01.291. 연산 증폭기 특성 연산 증폭기(op-amp)는 두 입력 단자 간의 전압 차이를 증폭하여 출력으로 전달하는 고이득 전압 증폭기이다. 이 연산 증폭기는 다양한 회로 구성에 따라 반전 증폭기, 비반전 증폭기, 차동 증폭기 등으로 활용될 수 있으며, 각 회로는 저항 및 피드백 요소를 추가하여 원하는 특성에 맞게 출력 전압을 조정할 수 있다. 2. 공통 모드 전압 범위 연산 증폭기의 입력 공통 모드 전압 범위를 측정하여 표 22-1에 기록하였다. 입력의 공통 모드 전압을 변화시키면서, 연산 증폭기의 DC 전류가 일정하게 흐르고 출력의 ...2025.01.29
-
핵심이 보이는 전자회로실험 BJT 공통이미터 증폭기2025.05.161. NPN형 BJT 공통이미터 증폭기 NPN형 BJT 공통이미터 증폭기의 동작 특성을 시뮬레이션과 실험을 통해 분석하였습니다. 시뮬레이션 결과와 측정 결과를 비교하여 전압이득을 계산하고 그래프로 나타내었습니다. 부하저항 RL이 증가하면 얻을 수 있는 전압이득이 많아지는 것을 확인하였습니다. 2. PNP형 BJT 공통이미터 증폭기 PNP형 BJT 공통이미터 증폭기의 동작 특성을 시뮬레이션과 실험을 통해 분석하였습니다. 시뮬레이션 결과와 측정 결과를 비교하여 전압이득을 계산하고 그래프로 나타내었습니다. 부하저항 RL이 증가하면 얻을 ...2025.05.16
-
전자회로(개정4판) - 생능출판, 김동식 지음 / 4장 연습문제 풀이2025.01.021. 바이폴라 접합 트랜지스터의 포화 및 차단 특성 1. 트랜지스터가 포화되기 위해서는 베이스-에미터 전압이 일정 값 이상이 되어야 한다. 포화가 되기 위한 베이스-에미터 전압의 최소값은 약 0.7V이다. 2. 트랜지스터가 차단되기 위해서는 베이스-에미터 전압이 0.7V 미만이 되어야 한다. 3. 트랜지스터의 포화 및 차단 특성을 분석하기 위해 KVL(Kirchhoff's Voltage Law)을 적용하여 관련 수식을 도출할 수 있다. 2. 트랜지스터의 등가 회로 및 파라미터 계산 4. 트랜지스터의 등가 회로를 이용하여 컬렉터-에미...2025.01.02
-
[A+]전자회로설계실습 실습 2 결과보고서2025.01.041. 센서의 구현 실험 결과 offset voltage가 증폭되어 4.23V가 출력되었습니다. Amplifier의 두 단자를 모두 접지하였지만, 입력단자의 미세한 신호가 매우 큰 open loop gain에 의해 증폭되었습니다. Open loop gain은 증폭비를 알 수 없기 때문에 offset voltage를 구할 수 없습니다. 2. Integrator의 동작 실험에서는 가변저항을 530Ω에 가까운 500Ω정도로 맞추어 입력저항으로 연결하였습니다. 이에 따라 Function generator는 2Vpp로 설정되어 있기 때문에 F...2025.01.04
-
[A+]전자회로설계실습 예비보고서 12025.01.041. 센서 측정 및 등가회로 센서의 출력 전압을 오실로스코프로 측정한 결과, peak to peak 전압이 200 mV였고 센서의 부하로 10 kΩ 저항을 연결한 후 10 kΩ 저항에 걸리는 전압을 측정한 결과 peak to peak 전압이 100 mV였다. 이를 통해 센서의 내부저항이 10 kΩ임을 알 수 있으며, 센서의 Thevenin 등가회로를 구할 수 있다. 또한 Function Generator의 출력을 100 mV로 설정하면 실제 출력전압의 peak to peak 전압이 200 mV가 출력된다. 2. Op amp를 사용한...2025.01.04
-
전자회로설계 및 실습5_BJT와 MOSFET을 사용한 구동(switch)회로_결과보고서2025.01.221. BJT와 MOSFET을 이용한 스위치 회로 설계 및 구현 이 보고서에서는 BJT와 MOSFET을 사용하여 TTL 레벨의 전압(5V)으로 동작하는 RTL 스위치 회로를 설계하고 구현하였습니다. 회로를 구현하고 LED 구동 및 측정을 통해 전압, 전류, 소비전력 등을 분석하였습니다. BJT 회로에서는 약 15%의 오차가 발생했지만, MOSFET 회로에서는 오차가 더 작은 측정값을 얻을 수 있었습니다. 전반적으로 실습이 잘 진행되었다고 볼 수 있습니다. 1. BJT와 MOSFET을 이용한 스위치 회로 설계 및 구현 BJT(Bipol...2025.01.22
-
[기초전자실험 with pspice] 04 옴의법칙 결과보고서 <학점 A+ 받음>2025.04.281. 옴의 법칙 실험을 통해 옴의 법칙을 확인하고 전압과 전류의 관계, 저항에 따른 전류의 변화를 이해하였다. 실험 과정에서 전류 측정 방법에 대한 주의가 필요하다는 것을 깨달았다. 2. 전압-전류 관계 실험 결과에 따르면 전압이 증가할수록 전류가 증가하는 비례 관계를 확인할 수 있었다. 특히 3V에서 4.2193 mA, 9V에서 14.910 mA로 전압 3배 증가 시 전류도 약 3배 증가하는 것을 확인하였다. 3. 저항에 따른 전류 변화 저항값이 작을수록 전압 증가에 따른 전류 증가 폭이 크고, 저항값이 클수록 전류 증가 폭이 작...2025.04.28