총 45개
-
인공지능 기반 스마트홈 자동화 솔루션 개발2025.01.041. 인공지능 기반 홈 자동화 시스템 개발 사용자의 생활 패턴, 행동 양식을 수집하고 분석하는 기계학습이 가능한 인공지능 모델을 개발해야 합니다. 또한 사용자의 자연어(대화)를 인식, 처리할 수 있는 딥러닝 기술도 필요합니다. 이를 통해 사용자의 욕구와 필요를 파악하고 스마트 기기를 자동으로 제어할 수 있는 홈 자동화 솔루션을 구현할 수 있습니다. 2. 스마트홈 사용자 인터페이스 개발 스마트홈 사업자는 다양한 스마트홈 기기들이 원활하게 연동되도록 지원하는 직관적이고 사용자친화적인 인터페이스를 구축해야 합니다. 사용자가 어플리케이션을...2025.01.04
-
인공지능을 활용한 금융사기 예방 솔루션2025.01.041. 인공지능을 활용한 금융사기 예방 금융사기는 현대 사회에서 심각한 경제 범죄이며, 특히 보이스피싱이 기승을 부리고 있습니다. 보이스피싱 피해금의 환급률이 낮고 피해 회복이 어려워 예방이 중요합니다. 인공지능 기반의 솔루션을 개발하면 금융거래 데이터를 실시간으로 분석하여 이상 거래를 탐지하고 사전에 예방할 수 있습니다. 인공지능은 기계학습을 통해 정확도를 높이며, 실시간 경고와 대응으로 금융사기 피해를 막을 수 있습니다. 이를 통해 금융기관의 고객 신뢰도 향상에도 기여할 수 있습니다. 1. 인공지능을 활용한 금융사기 예방 인공지능...2025.01.04
-
인공지능 기술이 활용되고 있는 사례2025.01.051. 구글 딥마인드사의 인공지능 바둑 프로그램 알파고 알파고는 몬테카를로 기법과 심층 인공신경망 기술을 활용하여 기존의 바둑 프로그램을 뛰어넘었다. 알파고는 정책망, 가치망, 검색이라는 3가지 강력한 무기를 가지고 있으며, 전문가들이 예상하지 못한 독창적인 수를 두어 이세돌 9단을 이겼다. 이를 통해 인공지능 기술의 발전을 보여주었다. 2. ChatGPT ChatGPT는 OpenAI에서 개발한 대화형 인공지능 모델로, 사용자의 질문에 대해 자연스러운 언어로 답변을 제공한다. ChatGPT는 강화학습을 통해 인간의 피드백을 반영하여 ...2025.01.05
-
인공지능과 기계학습 기말정리2025.01.131. 신경망의 오차 출력계층의 오차와 은닉계층의 오차를 구하는 방법에 대해 설명합니다. 출력계층의 오차는 목표값과 출력값의 차이이지만, 은닉계층에는 목표값이 존재하지 않기 때문에 출력계층의 오차를 재조합하여 은닉계층의 오차를 구합니다. 이러한 방식을 역전파라고 합니다. 2. 경사하강법 오차함수의 기울기에 따라 가중치를 조정하는 경사하강법에 대해 설명합니다. 오차함수로는 제곱오차 방식을 사용하며, 기울기의 부호에 따라 가중치를 반대 방향으로 조정합니다. 오버슈팅을 방지하기 위해 기울기가 완만해질수록 조금씩만 움직이도록 합니다. 3. ...2025.01.13
-
인공지능과 기계학습 중간정리2025.01.131. 예측자 예측자는 Y=AX의 관계가 선형일 때 사용된다. 예측자를 구하는 과정은 다음과 같다: 1) 임의의 값 A 설정 2) 주어진 데이터의 X를 대입하여 예측값 Y 출력 3) 목표값과 출력값을 비교하여 오차(error) 구하기 4) 오차가 양수인 경우 A를 늘려야 하며, 오버슈팅을 방지하기 위해 A를 조금씩만 조정해야 한다. 5) 이러한 과정을 반복(iteration)하여 A를 조정해나가는 것이 예측자 구하기의 핵심이다. 2. 분류자 분류자는 X·Y 평면에서 두 그룹을 분류하는 선형분류자를 말한다. 분류자 학습 과정은 다음과 ...2025.01.13
-
인공지능2025.01.131. 인공지능 AI 정의 인공지능 AI라고도 불리는 '인공지능'이란 인간과 같은 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미하며 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 인공지능이라고 한다. 2. 인공지능의 종류 강한 인공지능(Strong AI)은 자의식이 있어 스스로를 인공지능이라고 인식이 가능하며 자신이 얻는 정보 등을 바탕으로 스스로 판단을 내리고 명령을 실행하는 인공지능을 말한다. 약한 인공지능(Week AI)은 자의식이 없어 스스로 판단을 내릴 수 없는 인공지능 시스템을 이야기한다...2025.01.13
-
Generative AI를 사용하는 방식 - Fine Tunning 및 Prompt Engineering2025.01.141. 생성형 AI의 기본 개념 생성형 AI는 기계 학습의 발전을 통해 새로운 정보와 아이디어를 창조해내는 인공지능의 형태를 말합니다. 이는 단순히 데이터를 처리하고 분석하는 것을 넘어, 다양한 패턴과 연관성을 학습하여 새롭고 창의적인 결과물을 만들어냅니다. 생성형 AI는 예술, 디자인, 문학 등 다양한 창조적 분야에서 새로운 가능성을 열어주고 있습니다. 2. 생성형 AI의 주요 용도 생성형 AI는 예술과 엔터테인먼트 산업에서 두각을 나타내며, 새로운 창작의 지평을 열고 있습니다. 예술 분야에서는 독창적인 음악이나 미술 작품을 만들어...2025.01.14
-
빅데이터의 특징과 장단점 및 합리적인 활용방안2025.01.081. 빅데이터의 특징 빅데이터의 특성은 규모(Volume), 다양성(Variety), 속도(Velocity)로 정의된다. 규모는 데이터의 양이 매우 크다는 것을 의미하며, 다양성은 정형 데이터뿐만 아니라 비정형, 반정형 데이터도 포함된다는 것을 의미한다. 속도는 데이터가 처리되는 속도를 뜻하며, 신속한 데이터 분석이 더 큰 미래를 예측하고 가치를 제공할 수 있다. 2. 빅데이터의 장단점 빅데이터의 장점은 성공 사례를 통해 확인할 수 있다. 대표적으로 2008년 미국 대통령 선거에서 오바마 캠프가 유권자 데이터베이스를 구축하고 이를 ...2025.01.08
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.151. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능(AI)은 특정 작업을 수행하도록 설계된 인공지능으로, 사람처럼 사고하거나 인식하는 능력은 없다. 반면, 강한 인공지능은 인간과 유사한 사고, 이해, 학습 능력을 갖춘 인공지능을 말한다. 강한 AI는 현재 기술로는 아직 실현되지 않았으며, 과학 소설이나 미래 기술에 대한 논의에서 주로 다루어진다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 데이터를 통해 스스로 학습하고, 패턴을 인식하여 의사결정을 개선할 수 있는 능력을 갖추게 하는 기술분야이다. 기계학습의 가장 큰 특징은...2025.01.15
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13