
총 89개
-
기계 학습 - 기술부채의 고금리 신용카드 [논문리뷰]2025.04.261. 기술부채 기술부채는 실행속도와 엔지니어링 품질 사이의 딜레마를 지칭하는 것으로, 이를 적절하게 관리하지 않으면 유지보수 비용의 가파른 상승과 깨지기 쉬운 시스템 등으로 인해 혁신의 속도를 상당부분 늦출 수 있다. 전통적인 방식으로 이를 해결하기 위한 방법에는 리팩토링, 단위 테스트 범위 확대, 의존성 감소, 더 이상 사용되지 않는 코드의 삭제, 엄격한 API 관리와 체계적인 문서화 등이 있다. 2. 기계학습 시스템의 기술부채 기계학습 시스템에는 자체적으로 내재된 부채가 있어서 이를 제대로 관리하지 못할 경우 의도된 기대에서 멀...2025.04.26
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
하둡 구현 보고서2025.05.071. VMware VMware는 가상 PC를 만들어 주는 프로그램으로, 실제 PC와 동일한 환경의 가상 PC를 만들 수 있다. 이를 통해 다른 운영체제를 설치하여 사용할 수 있다. 2. Hadoop Hadoop은 대용량 데이터를 적은 비용으로 빠르게 분석할 수 있는 소프트웨어이다. 여러 대의 컴퓨터로 데이터를 분석하고 저장하는 방식으로 비용과 시간을 단축할 수 있다. Hadoop은 HDFS(분산 데이터 저장)와 MapReduce(분산 처리) 프레임워크로 시작되었으며, 데이터 저장, 실행 엔진, 프로그래밍 등 Hadoop 생태계 전반...2025.05.07
-
언어 변수와 헤지, 퍼지 집합 연산, 포함관계에 대해 서술하시오2025.01.271. 언어 변수 언어 변수는 수치 대신 언어적 표현을 사용하여 정보를 나타내는 방식입니다. 이는 모호하거나 불확실한 상황을 다루는 데 적합한 도구로, 사람들의 일상적인 의사소통 방식과 유사합니다. 언어 변수의 주요 특징은 모호성 및 가변성 반영, 맥락에 따른 유연한 해석 가능, 사람의 사고방식과 밀접한 연관성, 수학적 모델링 도구로의 활용 등입니다. 2. 헤지 연산 헤지 연산은 언어 변수의 의미를 조정하여 정보를 더 명확하고 세밀하게 전달하는 데 사용되는 기법입니다. 이를 통해 언어 변수의 강도나 범위를 조절하여 모호한 상황에서도 ...2025.01.27
-
인공지능과 기계학습 기말정리2025.01.131. 신경망의 오차 출력계층의 오차와 은닉계층의 오차를 구하는 방법에 대해 설명합니다. 출력계층의 오차는 목표값과 출력값의 차이이지만, 은닉계층에는 목표값이 존재하지 않기 때문에 출력계층의 오차를 재조합하여 은닉계층의 오차를 구합니다. 이러한 방식을 역전파라고 합니다. 2. 경사하강법 오차함수의 기울기에 따라 가중치를 조정하는 경사하강법에 대해 설명합니다. 오차함수로는 제곱오차 방식을 사용하며, 기울기의 부호에 따라 가중치를 반대 방향으로 조정합니다. 오버슈팅을 방지하기 위해 기울기가 완만해질수록 조금씩만 움직이도록 합니다. 3. ...2025.01.13
-
서포트 벡터 머신(Support Vector Machine, SVM)2025.05.101. 서포트 벡터 머신(Support Vector Machine, SVM) 서포트 벡터 머신(Support Vector Machine, SVM)의 이름은 알고리즘의 기본 원리와 핵심 개념에 기반하여 지어졌습니다. 데이터 포인트들을 분류하기 위해 사용되는 초평면(hyperplane)의 위치는 이 서포트 벡터들에 의해 결정됩니다. 서포트 벡터는 결정 경계와 가장 가까운 데이터 포인트들을 의미합니다. 이러한 포인트들은 결정 경계 주변에서 서로 다른 클래스에 속하는 데이터들을 분리하는 역할을 수행합니다. SVM은 주어진 데이터를 기반으로 ...2025.05.10
-
AI 기계학습에 대한 설명2025.04.291. 기계학습 기계학습은 컴퓨터가 스스로 학습하는 방법 중 하나로, 특정 명령이나 프로그램의 지시 없이도 데이터를 기반으로 패턴을 인식하고 학습하는 방법입니다. 데이터의 라벨화 유무에 따라 지도형 학습과 비지도형 학습으로 나뉘며, 지도형 학습은 인간의 작업을 학습하는 방식으로 데이터를 라벨화하여 제공하고 이를 기반으로 학습을 진행합니다. 2. 패턴 인식 기계학습에서는 방대한 데이터를 기반으로 예측을 통해 확률적으로 패턴을 인식합니다. 정답 데이터와 새로운 데이터를 비교하여 유사성을 체크하고 이를 확률로 계산하여 특정 패턴을 인식하게...2025.04.29
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08
-
방송대_대학수학의이해_중간과제물_2023학년도_2학기2025.01.251. CAS와 직접연산 CAS와 직접연산을 모두 경험해본 입장에서 수학 학습에 컴퓨터 소프트웨어를 이용하는 것을 찬성한다. 기계학습에 필요한 수학을 공부하기 위해 '기계처럼 기계학습하기'라는 스터디에 참여했으며, 이론 공부와 연습문제 풀이를 진행했다. 2. 기계학습 스터디 기계학습 스터디의 과제인 2장 연습문제를 풀기 위해 2023년 9월 1일 python의 sympy모듈을 사용했다. 연습문제 13번은 f(x)에서 난수를 생성하여 초깃값 X0=2.1을 얻었을 때 theta = theta -p*g를 연속적으로 사용하여 얻는 점 x1,...2025.01.25
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13