
총 89개
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
KL Divergence2025.05.101. KL Divergence KL Divergence는 두 확률 분포 사이의 차이를 측정하기 위해 사용되는 개념입니다. KL Divergence는 주로 정보 이론과 확률 이론에서 사용되며, 두 분포가 얼마나 다른지를 수치적으로 나타냅니다. KL Divergence는 다양한 분야에서 활용되며, 예를 들어 확률 분포 간의 차이를 측정하여 데이터 압축, 정보 검색, 통계 분석 등에 사용될 수 있습니다. 2. KL Divergence와 엔트로피 KL Divergence와 엔트로피는 서로 다른 개념이지만, 정보 이론과 확률론에서 밀접한 관...2025.05.10
-
아마존의 클라우드 컴퓨팅 활동 요약2025.04.291. 광고 및 마케팅 기술 AWS는 퍼스트 파티 데이터 플랫폼, 데이터 협업, 광고 플랫폼, 광고 인텔리전스 및 다양한 고객 경험을 재정립하는데 도움이 되는 컴퓨팅, 기계 학습 및 분석 기능을 제공하여 광고 및 마케팅 혁신을 가속화하고 있다. 2. 금융 서비스 AWS는 뱅킹, 결제, 자본 시장, 보험 분야의 금융 서비스 기관에 안전하고 복원력 있는 글로벌 클라우드 인프라 및 서비스를 제공하여 미래의 니즈에 대응하는데 도움을 주고 있다. 3. 게임 기술 AWS for Games는 게임 구축, 실행 및 성장에 도움이 되는 6가지 솔루션...2025.04.29
-
경영정보시스템과 인공지능(AI) 기술의 발전 및 응용2025.01.241. 약한 인공지능과 강한 인공지능 인공지능은 수행 능력과 인지 수준에 따라 약한 인공지능(Narrow AI)과 강한 인공지능(General AI)으로 구분됩니다. 약한 인공지능은 특정 과제에 특화된 지능으로, 인간의 뇌와 같은 종합적 사고를 하진 않지만 특정 목적을 달성하기 위해 최적화된 지능입니다. 반면 강한 인공지능은 인간과 비슷한 수준의 종합적인 사고와 문제 해결 능력을 가진 지능을 목표로 합니다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning)은 인공지능의 한 분야로, 컴퓨터가 데이터를 기반으로 스스로...2025.01.24
-
정보통신망4A 기계학습 Machine Learning에 관하여 조사하여 설명하고 기계학습을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 기계학습 정의 및 필요성 기계 학습은 컴퓨터 시스템이 데이터를 분석하고 패턴을 학습하여 작업을 수행할 수 있는 능력을 갖추는 것을 의미한다. 기계 학습은 데이터 마이닝이나 기타 학습 알고리즘을 사용하여 지식을 추출하고 이를 경험기반으로 삼아 비슷한 상황의 미래 사건의 결과를 예측하는 컴퓨터 프로그램이다. 기계 학습은 대량의 데이터 처리, 복잡한 패턴 인식, 자동화된 결정, 개인화된 경험 제공, 의사 결정 지원, 지능적인 시스템 구축 등의 이유로 매우 중요하다. 2. 기계학습 장점과 문제점 기계 학습의 장점으로는 패턴 인식 및 ...2025.01.25
-
인공지능의 역사와 현 수준2025.05.011. 인공지능의 역사 인공지능(AI)의 역사는 1940년대부터 시작되었으며, 주요 이정표로는 앨런 튜링의 튜링 테스트 제안, 1950-60년대의 초기 AI 프로그램 개발, 1970-80년대의 전문가 시스템 개발, 1980-90년대의 신경망 및 기계 학습 알고리즘 개발, 2000년대의 딥러닝 알고리즘 개발 등이 있다. 최근 몇 년 동안 AI는 자율주행 차량, 로봇 공학, 가상 비서, 개인화된 의학 등 다양한 분야에서 빠르게 발전하고 있다. 2. 인공지능의 현 수준 인공지능은 자연어 이해, 이미지 인식, 의사결정 등 인간의 지능이 필요...2025.05.01
-
[김영평생교육원]학점은행제 경영학 경영정보시스템 과제 A+2025.05.051. 약한 인공지능과 강한 인공지능 약한 인공지능은 인간의 뇌처럼 사고하거나 문제를 해결할 수는 없지만 컴퓨터를 기반으로 한 인공적인 지능을 의미한다. 반면 강한 인공지능은 인간에 가까운 사고를 하여 문제를 해결할 수 있는 인공지능이다. 강한 인공지능은 약한 인공지능이 가진 기능을 갖출 뿐만 아니라 인간 수준의 복잡하고 다양한 생각을 가질 수 있고, 또 느낄 수 있다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 스스로 학습을 진행하여 인공지능의 성능을 발전시킬 수 있는 기술이다. 기계학습은 지도 학습, 비지도 학습, 준지도 학...2025.05.05
-
인공지능의 이해2025.05.101. 인공지능(AI)의 개념 인공지능(AI)은 컴퓨터가 인간의 학습능력, 추론능력, 지각능력을 모방하고 구현하는 기술이다. 이를 위해 컴퓨터 과학의 여러 분야에서 연구가 이루어지고 있으며, 대표적으로는 기계학습, 자연어 처리, 컴퓨터 비전 등이 있다. 2. 인공지능(AI)의 관련 기술 인공지능(AI)은 기계나 컴퓨터 프로그램을 사용하여 인간의 학습 능력, 추론 능력, 판단 능력, 의사 결정 능력 등을 모방하거나 개선하는 기술이다. 이를 위해 기계학습, 딥 러닝, 자연어 처리, 컴퓨터 비전, 강화학습, 자율주행 등 다양한 기술이 사용...2025.05.10
-
GPT란 대체 무엇?2025.05.081. GPT 개요 GPT는 대규모 언어 모델로, 방대한 텍스트 및 코드 데이터 세트로 학습되었습니다. 텍스트 생성, 언어 번역, 다양한 종류의 창의적인 콘텐츠 작성, 유익한 방식으로 질문에 답변할 수 있습니다. 2. GPT의 활용 GPT는 챗봇 및 가상 비서, 기계 번역, 창의적인 콘텐츠 작성, 질문에 답변하는 등 다양한 방면에서 활용될 수 있습니다. 3. GPT의 작동 원리 GPT는 단어와 구 사이의 통계적 관계를 학습하고, 단어의 의미에 대한 지식을 사용하여 새로운 텍스트를 생성합니다. 이는 자동 완성과 유사한 방식으로 작동합니...2025.05.08