
총 76개
-
입력장치와 출력장치에 대한 차이점과 음성인식장치의 특징2025.01.171. 입력장치와 출력장치의 정의 및 기능 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하며, 키보드, 마우스, 스캐너 등이 대표적인 예이다. 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 하며, 모니터, 프린터, 스피커 등이 대표적이다. 입력장치와 출력장치는 상호 보완적인 역할을 하여 사용자가 컴퓨터를 효율적으로 사용할 수 있게 한다. 2. 입력장치와 출력장치의 차이점 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하는 반면, 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 한다. 이러...2025.01.17
-
언어 변수와 헤지, 퍼지 집합 연산, 포함관계에 대해 서술하시오.2025.01.171. 퍼지 퍼지(Fuzzy)란 모호하거나 정확하게 정의하기 어려운 개념을 나타내는 말이다. 퍼지 논리는 모호한 대상을 다루는 논리이다. 퍼지 집합은 퍼지 논리에서 중요한 개념으로, 모호한 정보나 불확실성을 다루는 데 사용된다. 퍼지 집합을 구성할 때는 단일 전문가 기반 퍼지 집합과 다중 전문가 기반 퍼지 집합, 인공 신경망을 이용하는 방법 등이 있다. 2. 언어 변수와 헤지 언어 변수란 우리가 말할 때 정확한 단어를 선택하기 모호한 상황에서 사용되는 용어를 말한다. 언어 변수는 절대적인 언어 변수, 상대적인 언어 변수, 범주형 언어...2025.01.17
-
인공지능 '챗봇' 중등 교과교육 활용방안 탐색2025.01.181. 외국어 교육에서의 챗봇(Chat Bot) 활용 사례 챗봇은 문자나 음성으로 대화가 가능한 컴퓨터 프로그램으로, 다양한 문제를 해결할 수 있도록 도와주는 대화형 사용자 인터페이스이다. 외국어 교육에서는 언어학습이라는 목표를 가지고 있으며, 학습자들이 원어민처럼 옆에 두고 수시로 도움받는 것을 요구한다. 국내에서 개발된 'Genie Tutor'는 한국전자통신연구원이 개발한 인공지능형 영어 학습 프로그램으로, 학습자의 음성데이터를 받아들여 적절한 반응을 처리하여 학습자 간 영어 대화가 가능하다. 2. 중국어 교육용 챗봇(Chat B...2025.01.18
-
트랜스포머 알고리즘의 개념과 적용 사례2025.01.251. 트랜스포머 알고리즘의 개념 트랜스포머 알고리즘은 주의 메커니즘을 기반으로 하는 딥러닝 모델로, 입력 데이터의 각 요소가 다른 모든 요소와의 관계를 고려하여 변환된다. 이를 통해 순차적인 처리 대신 병렬 처리가 가능하게 되어 학습 속도가 크게 향상되었다. 트랜스포머는 인코더와 디코더로 구성되어 있으며, 각 단계에서 다중 헤드 자기 주의 메커니즘을 사용한다. 이 알고리즘은 2017년 구글의 연구팀이 발표한 논문에서 처음 소개되었다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 모델은 인코더와 디코더 블록으로 구성되어 있다. 인코더는...2025.01.25
-
효율적인 텍스트 분류를 위한 fastText 모델2025.01.261. 텍스트 분류 이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룹니다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적합니다. 이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었습니다. 2. 데이터 세트 이 논문에서는 텍스트 분류 작업에 잘...2025.01.26
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.261. LLM(대규모 언어 모형) LLM은 주로 텍스트 데이터를 기반으로 학습된 모델로, 자연어 이해(NLU)와 자연어 생성(NLG)에 강점을 지닌다. 대표적인 예로는 OpenAI의 GPT 시리즈가 있으며, 이들은 방대한 양의 텍스트 데이터를 학습하여 인간과 유사한 수준의 텍스트 생성 능력을 보유하고 있다. LLM은 주로 챗봇, 자동 번역, 텍스트 요약, 감정 분석 등 다양한 언어 처리 작업에 활용된다. 2. LMM(대규모 멀티모달 모형) LMM은 텍스트뿐만 아니라 이미지, 음성, 비디오 등 다양한 형태의 데이터를 동시에 처리할 수 ...2025.01.26
-
Chat GPT의 장단점2025.01.041. Chat GPT의 정의와 특징 Chat GPT는 Generative Pretrained Transformer의 약자로, 인공지능 분야에서 사용되는 언어 모델 중 하나입니다. 이 모델은 OpenAI에서 개발한 것으로, 대규모의 데이터셋으로 사전학습된 후 다양한 자연어 처리 태스크에 사용될 수 있습니다. 2. Chat GPT의 장점 Chat GPT의 장점으로는 다양한 자연어 처리 태스크에 적용 가능, 대용량 모델, 맞춤형 모델 학습 가능, 유연한 문장 생성 기능, 다양한 데이터셋 사용 가능, 지속적인 업데이트와 발전 등이 있습니다...2025.01.04
-
산업혁명과 비즈니스 ) 인공지능(AI) 기반 우울증 치료 로봇2025.01.211. 인공지능(AI) 기반 우울증 치료 로봇 본 보고서에서 제안하는 아이디어는 '인공지능(AI) 기반 우울증 치료 로봇'입니다. 이는 최첨단 AI 기술인 자연어 처리(NLP), 컴퓨터 비전을 통한 감정 인식, 기계 학습 알고리즘 등 4차 산업혁명 기술을 총체적으로 활용하여 우울증 환자의 심리 치료를 혁신적으로 지원하고 정신 건강 관리를 새로운 차원으로 끌어올리는 시스템입니다. 이 로봇은 환자의 얼굴 표정, 음성 톤, 제스처 등 비언어적 신호를 포착하여 정확한 감정 상태를 인식하고, 대화 내용을 NLP로 분석하여 언어적 감정 표현을 ...2025.01.21
-
인공지능(AI) 적용 사례 분석 - 현황, 사례, 영향도, 미래2025.01.231. 인공지능(AI) 발전 현황 2024년 현재, 인공지능(AI)은 기술적 성숙기에 접어들면서, 단순한 이론적 연구에서 다양한 실제 응용으로 빠르게 확장되고 있습니다. 초기에 AI는 데이터 처리와 자동화된 작업 수행에 주로 사용되었으나, 최근에는 생성형 AI 기술이 눈부신 성장을 이루어냈습니다. 대표적인 예로 <ChatGPT>와 <DALL-E>와 같은 모델은 대규모 자연어 처리와 이미지 생성에서 큰 발전을 보였으며, 이를 통해 콘텐츠 제작과 업무 생산성 향상에 실질적인 기여를 하고 있습니다. 2. AI 기술의 발전 단계 첫 단계로는...2025.01.23
-
미디어혁신과뉴스스토리텔링 ) ChatGPT를 사용해서 ChatGPT를 이용한 뉴스 스토리텔링 방법에 어떤 것이 있는지 정리, 위 ChatGPT 응답 내용 가운데 잘못된 점이나 달리 생각되는 점을 한 가지 찾아서, 그 이유를 설명하시오.2025.01.241. ChatGPT를 이용한 뉴스 스토리텔링 방법 ChatGPT와 같은 자연어 처리 모델을 사용하여 뉴스 스토리텔링을 수행하는 방법은 다양하며, 주제 선정, 뉴스 기사 데이터 수집, 모델 학습, 스토리텔링 구조 작성, 대화 형식 설정, 단순성과 명확성, 정확한 정보, 언어 스타일 조절, 독자나 대상자 고려, 피드백 및 개선 등의 단계를 포함한다. 이러한 방법을 통해 효과적인 뉴스 스토리텔링을 수행할 수 있지만, 모델의 능력과 한계를 이해하고 정확성과 균형을 유지하는 것이 중요하다. 2. ChatGPT 응답 내용의 잘못된 점 및 달리...2025.01.24