
총 76개
-
논리모델의 개념과 특성, 프로그램 평가 및 사례2025.05.101. 논리모델의 개념과 특성 논리모델은 실생활의 복잡한 문제를 수학적으로 표현하고 해결하는 도구입니다. 명제 논리학의 개념을 기반으로 하며, 간결한 논리적 추론을 가능하게 합니다. 논리모델의 가장 중요한 특성은 절대적인 정확성으로, 모호함이나 불확실성이 없어 프로그램의 신뢰성과 안정성을 향상시킬 수 있습니다. 또한 논리모델은 실제 세계에 적용하고 이해하기 쉬운 기호와 연산자를 사용하여 사용자가 문제를 쉽게 이해하고 해결할 수 있도록 돕습니다. 2. 논리모델을 이용한 프로그램 평가 프로그램 평가에서 논리모델은 두 가지 방식으로 활용됩...2025.05.10
-
OpenAI의 혁신적 기술, 인공지능의 미래2025.05.071. OpenAI 소개 OpenAI는 2015년에 설립된 인공지능 연구 및 개발 회사로, 엘론 머스크, 사머 세틴 등이 창업 멤버로 참여하였습니다. 회사의 목적은 인공지능 기술의 발전과 사람들의 삶에 긍정적인 영향을 미치기 위한 연구를 진행하는 것입니다. OpenAI는 인공지능 연구 분야에서 혁신적인 기술 개발과 연구를 수행하고 있으며, 특히 대화형 AI 모델인 GPT 시리즈는 자연어 생성 분야에서 큰 주목을 받고 있습니다. 2. GPT 모델의 혁신성과 활용분야 GPT (Generative Pre-trained Transformer...2025.05.07
-
전산개론_빅데이터의 정의와 특징 그리고 분석기술을 조사하여 제출하시오.2025.05.021. 4차 산업혁명 4차 산업혁명의 특징은 초연결성, 융합, 초지능, 노동력 위기, 심각한 불균형과 양극화 현상 등 5가지로 분류할 수 있다. 이러한 4차 산업혁명의 배경 속에서 빅데이터의 개념, 특징, 분석기술이 등장하게 되었다. 2. 빅데이터의 개념 빅데이터는 많은 양의 데이터로, 속도가 빠르고 다양한 종류의 데이터를 포함하고 있다. 기존의 관리 방법이나 분석 체계로는 처리하기 어려운 방대한 양의 데이터 집합을 저장, 수집, 분석, 관리, 시각화하는 정보통신 기술 분야라고 볼 수 있다. 3. 빅데이터의 특징 빅데이터의 대표적인 ...2025.05.02
-
Chat GPT의 원리, 활용, 한계와 업무 효율화2025.01.151. Chat GPT의 개요 Chat GPT는 OpenAI에서 개발한 자연어 처리(NLP) 모델로, 대화형 인공지능 서비스입니다. Chat GPT는 대규모 언어 모델을 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해 및 생성 능력을 갖추고 있습니다. Chat GPT는 다양한 응용 분야에서 활용될 수 있으며, 확률적 응답 생성, 강화학습을 통한 성능 개선, 언어 모델의 확장성 등의 특징을 가지고 있습니다. 2. 자연어 처리와 Chat GPT 자연어 처리(NLP)는 컴퓨터가 인간의 언어를 이해하고 생성할 수 있도록 하는 기...2025.01.15
-
ChatGPT 설명 및 이용 가이드2025.05.071. ChatGPT ChatGPT는 최근 인공지능 분야에서 주목받는 대화 모델의 일종입니다. 이 모델은 OpenAI에서 개발한 GPT(Generative Pre-trained Transformer) 모델의 일부로, 자연어 처리 기술과 딥러닝 알고리즘을 활용하여 인간과 대화하는 역할을 수행합니다. ChatGPT는 챗봇, 인공지능 비서, 상담원 등 다양한 분야에서 활용됩니다. 2. Transformer ChatGPT(Generative Pre-trained Transformer)은 딥러닝 기술 중 하나인 Transformer 구조를 기...2025.05.07
-
생성시스템에 대해 설명하시오2025.05.111. 생성시스템 생성시스템은 컴퓨터 프로그램이나 하드웨어를 사용하여 새로운 콘텐츠를 자동으로 생성하는 시스템을 말합니다. 이러한 시스템은 인공지능, 기계학습, 자연어처리 등의 기술을 활용하여 다양한 종류의 콘텐츠를 생성할 수 있습니다. 생성시스템은 예술, 문학, 음악, 게임, 디자인 등 다양한 분야에서 활용될 수 있으며, 콘텐츠의 품질과 다양성을 향상시킬 수 있습니다. 2. 생성시스템의 작동 방식 생성시스템은 다양한 방식으로 작동할 수 있습니다. 예를 들어, 자연어처리 기술을 사용하여 텍스트를 생성하는 시스템은 주어진 데이터를 분석...2025.05.11
-
딥러닝의 최신 동향: ChatGPT, Gemini, Lamma, Claude, Hyper Clovax 등2025.01.171. Gemini Gemini는 구글의 AI 연구팀이 개발한 차세대 언어 모델로, 인간 수준의 이해력과 자연스러운 대화를 목표로 하고 있습니다. Gemini는 다중 언어 지원, 컨텍스트 이해, 확장성 등의 특징을 가지고 있으며, 구글 검색 엔진, 음성 비서, 번역 서비스 등 다양한 애플리케이션에 적용되고 있습니다. 2. Lamma Lamma는 Meta(구 Facebook)의 AI 연구팀이 개발한 새로운 딥러닝 모델로, 텍스트 생성, 이미지 인식, 음성 인식 등 다양한 분야에서 활용될 수 있습니다. Lamma는 대규모 사전 학습, 적...2025.01.17
-
한국방송통신대학교 언어의 이해 중간과제물2025.01.241. 컴퓨터 언어학 컴퓨터 언어학은 컴퓨터가 인간의 언어를 처리할 수 있도록 하는 방법을 연구하는 분야로, 1950년 미국에서 러시아어 자동 번역 시도로부터 시작되었다. 컴퓨터 언어학은 인간의 언어 지식을 활용하여 유용한 컴퓨터 시스템을 개발하는 것을 목적으로 하며, 최근 언어 연구에도 컴퓨터가 활용되고 있다. 주요 연구 분야로는 맞춤법 검사, 문법 검사, 음성 합성 및 인식, 기계 번역, 형태소 분석 등이 있다. 2. 맞춤법 검사 컴퓨터 언어학에서는 단어의 형태론적 구조를 분석하여 맞춤법 검사와 교정을 수행한다. 이를 위해서는 컴...2025.01.24
-
효율적인 텍스트 분류를 위한 fastText 모델2025.01.261. 텍스트 분류 이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룹니다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적합니다. 이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었습니다. 2. 데이터 세트 이 논문에서는 텍스트 분류 작업에 잘...2025.01.26
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 딥러닝과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 사람처럼 언어를 이해하고 생성할 수 있는 능력을 갖춘 모델입니다. 이는 자연어 처리(NLP) 기술의 발전을 기반으로 하며, 딥러닝 기술을 활용해 언어의 문법적 구조와 단어 간 의미적 관계를 학습합니다. LLM은 챗봇, 자동 번역, 텍스트 요약 등 다양한 분야에서 활용되고 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트뿐만 아니라 이미지, 소리, 동영상 등 다양한 데이터를 통합적으로 처리할 수 있는 인공지능 ...2025.01.26