
총 22개
-
고려대학교 디지털시스템실험 A+ 3주차 결과보고서2025.05.101. 2-to-4 Line Decoder 2-to-4 Line Decoder의 동작을 구현하였습니다. A0=0, A1=0일 때 출력, A0=1, A1=0일 때 출력, A0=0, A1=1일 때 출력을 확인하였습니다. 2. 3-to-8 Line Decoder 3-to-8 Line Decoder의 동작을 구현하였습니다. A0=1, A1=1, A2=0일 때 출력, A0=0, A1=0, A2=1일 때 출력, A0=1, A1=0, A2=1일 때 출력을 확인하였습니다. 3. Binary-to-BCD Converter Binary-to-BCD C...2025.05.10
-
디지털시스템설계실습_HW_WEEK62025.05.091. 4-to-1 MUX 이번 실습에서는 4-to-1 MUX를 Verilog 코드로 구현하고 시뮬레이션을 통해 동작을 확인했습니다. if-else 문과 case 문을 사용하여 MUX를 구현했으며, 시뮬레이션 결과를 통해 입력 신호 s0, s1에 따라 출력 i0, i1, i2, i3가 정상적으로 동작하는 것을 확인할 수 있었습니다. 2. 4-bit 시프트 레지스터 4-bit 시프트 레지스터를 Verilog 코드로 구현하고 시뮬레이션을 통해 동작을 확인했습니다. non-blocking 할당을 사용하여 클록 신호에 맞춰 입력 sin 값이...2025.05.09
-
디지털시스템설계실습_HW_WEEK92025.05.091. 4비트 CLA 어드러 4비트 CLA 어드러를 구현하고 RTL 스키매틱과 합성 스키매틱을 비교했습니다. 테스트 벤치 코드를 통해 시뮬레이션을 수행했고, 결과 분석을 통해 Critical Path Delay가 6.672ns임을 확인했습니다. 2. 32비트 CLA 어드러 32비트 CLA 어드러를 구현하고 RTL 스키매틱과 합성 스키매틱을 비교했습니다. 테스트 벤치 코드를 통해 시뮬레이션을 수행했고, 결과 분석을 통해 Critical Path Delay가 7.416ns임을 확인했습니다. 3. 비트 수에 따른 Critical Path ...2025.05.09
-
디지털시스템설계실습_HW_WEEK102025.05.091. FSM Detector 이번 과제를 통해 FSM Detector를 구현해보는 시간이었습니다. Testbench에서 1101 sequency를 포함하는 input x '011011011110111' sequency를 생성하여 그 결과를 확인했습니다. FSM 모듈은 위의 input을 감지하고 그에 따라 1을 출력하는 것을 알 수 있었습니다. 그리고 이 과정을 분석하면서 Detector의 원리도 이해할 수 있었습니다. 2. Verilog Code 과제에서는 FSM_Detector 모듈을 Verilog로 구현하고, Test Bench...2025.05.09
-
디지털시스템설계실습_HW_WEEK112025.05.091. 7 세그먼트 업다운 카운터 이 프레젠테이션은 7 세그먼트 업다운 카운터를 구현하는 방법을 설명합니다. 이를 위해 Verilog 코드를 사용하여 상태 머신을 설계하고, 각 상태에 따라 7 세그먼트 디스플레이의 출력을 제어합니다. 또한 시뮬레이션을 통해 동작을 확인하고, 합성 후 critical path delay를 분석합니다. 이를 통해 FSM 설계의 효율성과 7 세그먼트 디스플레이의 작동 원리를 이해할 수 있습니다. 2. 상태 머신 설계 이 프레젠테이션에서는 7 세그먼트 업다운 카운터를 구현하기 위해 상태 머신을 설계합니다. ...2025.05.09
-
고려대학교 디지털시스템실험 A+ 11주차 결과보고서2025.05.101. 컴퓨터 시스템의 기본 구조 이번 실험을 통해 컴퓨터가 폰 노이만 구조로 이루어져 있다는 것을 알게 되었습니다. 코드를 작성하면서 간단한 동작을 구현하는 데 매우 복잡한 코드가 필요하다는 것을 느꼈고, 한 글자의 실수로 아예 값이 출력되지 않는 경험을 많이 하였습니다. 2. 데이터 경로(Data Path) 모듈 설계 및 구현 입력값과 출력값이 서로서로 연결되어 있는 구조를 코딩할 때에는 알맞은 값이 잘 입력되고 있는지 확인하는 것이 중요하다는 것을 깨달았습니다. 1. 컴퓨터 시스템의 기본 구조 컴퓨터 시스템의 기본 구조는 매우 ...2025.05.10
-
고려대학교 디지털시스템실험 A+ 13주차 결과보고서2025.05.101. 컴퓨터 시스템의 기본 구조 이번 실험을 통해 Simple Computer의 동작을 구현해 보고 이해할 수 있었습니다. Control Unit, Data Path, Register File, Function Unit 등 컴퓨터 시스템의 기본적인 구조를 이해하고 실험을 진행했습니다. 2. Simple Computer 시뮬레이션 코드를 작성하고 시뮬레이션을 돌려보는 과정에서 코드 작성 순서를 지키지 않거나 Radix 설정을 잘못하는 등 작은 실수들이 여러 번 있었지만, 그만큼 많이 배울 수 있었습니다. Simple Computer의...2025.05.10
-
디지털시스템설계실습_HW_WEEK52025.05.091. 4bit comparator 4비트 comparator 모듈을 구현하고, 이를 연결하여 8비트 cascadable comparator 모듈을 구현하였다. 각 비트를 비교하여 크다, 같다, 작다로 분류하여 출력하는 과정을 이해할 수 있었다. 2. Matrix multiplication 행렬 곱셈 모듈을 구현하면서 컴퓨터가 곱셈 연산을 수행하는 방식을 이해할 수 있었다. 2차원 배열 형태로 구현하는 것이 어려웠다. 3. Positive-edge triggered D flip-flop 양 에지 트리거 D 플립플롭을 구현하면서 동작 ...2025.05.09
-
고려대학교 디지털시스템실험 A+ 10주차 결과보고서2025.05.101. SRAM 구현 및 읽기/쓰기 동작 본 실험을 통하여 16X4 SRAM을 구현하고 메모리에 데이터를 읽고 쓰는 과정을 이해할 수 있었습니다. SRAM을 이용하여 계산기를 구현할 때 결과값이 FPGA에 나타나지 않는 문제가 있었는데, 7 segment control module에서 rst 값에 1을 넣어주는 것으로 이 문제를 해결할 수 있었습니다. 2. SRAM을 이용한 계산기 구현 8X4 SRAM을 이용하여 계산기를 구현하는 실험을 진행하였습니다. SRAM을 프로젝트에 응용하여 각종 데이터를 저장하고 읽을 수 있도록 하면 좋을 ...2025.05.10
-
고려대학교 디지털시스템실험 A+ 5주차 결과보고서2025.05.101. Binary to 7-SEGMENT 이번 실험을 통해 7-segment의 8자리가 어떻게 동시에 보여지는지 알 수 있었습니다. Binary to 7-segment를 구현할 때에 저번 시간에 만들었던 binary to BCD를 사용하였고, 이렇게 만든 Binary to 7-segment 함수를 이용해 7-segment 계산기를 만들 수 있었습니다. 이 과정에서 간단한 동작을 하는 함수 하나를 만드는 데에도 그 안에 많은 함수가 쓰인다는 것을 알 수 있었습니다. 2. Adder/Subtractor와 연결한 7-SEGMENT 만들기...2025.05.10