
총 89개
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13
-
인공지능2025.01.131. 인공지능 AI 정의 인공지능 AI라고도 불리는 '인공지능'이란 인간과 같은 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미하며 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 인공지능이라고 한다. 2. 인공지능의 종류 강한 인공지능(Strong AI)은 자의식이 있어 스스로를 인공지능이라고 인식이 가능하며 자신이 얻는 정보 등을 바탕으로 스스로 판단을 내리고 명령을 실행하는 인공지능을 말한다. 약한 인공지능(Week AI)은 자의식이 없어 스스로 판단을 내릴 수 없는 인공지능 시스템을 이야기한다...2025.01.13
-
AI 기계학습에 대한 설명2025.04.291. 기계학습 기계학습은 컴퓨터가 스스로 학습하는 방법 중 하나로, 특정 명령이나 프로그램의 지시 없이도 데이터를 기반으로 패턴을 인식하고 학습하는 방법입니다. 데이터의 라벨화 유무에 따라 지도형 학습과 비지도형 학습으로 나뉘며, 지도형 학습은 인간의 작업을 학습하는 방식으로 데이터를 라벨화하여 제공하고 이를 기반으로 학습을 진행합니다. 2. 패턴 인식 기계학습에서는 방대한 데이터를 기반으로 예측을 통해 확률적으로 패턴을 인식합니다. 정답 데이터와 새로운 데이터를 비교하여 유사성을 체크하고 이를 확률로 계산하여 특정 패턴을 인식하게...2025.04.29
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 분류 인공지능은 인간성이나 지능을 가진 존재나 시스템이 인위적으로 만들어낸 지능을 말한다. 일반적으로 컴퓨터가 인간에 의해 작동될 때 지능을 필요로 하는 업무를 수행하는 과학으로 정의되며, 컴퓨터가 스스로 인식하고 자율적으로 행동하는 것을 의미한다. 인공지능은 약한 인공지능과 강한 인공지능으로 분류된다. 2. 기계학습 및 딥러닝 기술 기계학습은 데이터에서 코드로 지정되지 않은 동작을 기계가 학습하고 실행할 수 있는 알고리즘을 개발하는 연구 분야이다. 딥러닝은 비선형 변환 기법의 조합을 통해 높은 수준의 추상화...2025.01.18
-
데이터 모델링에 관한 소고2025.05.101. 데이터 모델링 데이터 모델링은 예를 들어 제조 공정에서 발생하는 다양한 변수와 상호작용을 이해하고 표현하기 위한 기술입니다. 이를 통해 우리는 불량 발생에 영향을 미치는 주요 변수들을 식별하고, 이러한 변수들 간의 관계를 파악할 수 있습니다. 데이터 모델링을 통해 불량 발생 원인을 정확하게 분석하고, 불량율을 예측할 수 있는 모델을 구축할 수 있습니다. 2. 문제의 단순화: 단일 변수 표현 다변수 데이터를 예를 들어, 면적, 두께 등과 같은 기본적인 물리량으로 하나의 값으로 표현함으로써, 다양한 변수 간의 복잡한 관계를 단순화...2025.05.10
-
현대 컴퓨터 과학의 발전과 알고리즘의 역할2025.05.161. 컴퓨터 과학의 발전과 알고리즘의 역할 현대의 컴퓨터 과학 발전은 꾸준한 연구와 발전의 연속이라 할 수 있습니다. 특히, 알고리즘이 이러한 발전의 핵심이 되어왔다는 것이 많은 학자들의 공통된 견해입니다. 본 장에서는 'The Nature of Computation'이라는 논문을 통해 현대 컴퓨터 과학의 기원과 알고리즘의 중요성에 대하여 자세히 알아보겠습니다. 2. 자연어 처리 분야의 딥러닝 동향 최근 연구에서는 자연 언어 처리(NLP) 분야에서 딥러닝의 동향을 관찰할 수 있습니다. 이 주제에 대하여, 최근 논문 'Attentio...2025.05.16
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.161. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 한 가지 특정 작업을 수행하는 것을 목표로 하는 인공지능이며, 강한 인공지능은 인간의 지능과 비슷한 기능을 하는 것을 목표로 한다. 약한 인공지능은 미리 정해진 데이터와 알고리즘을 통해 최적의 결과를 만들어내는 것이 목표이지만, 강한 인공지능은 다양한 기능을 수행하고 새로운 문제를 해결하는 방법을 직접 찾는 것을 목표로 한다. 2. 기계학습의 특징 기계학습은 인공지능을 구현하는 방법 중 하나로, 빅데이터를 반복적으로 분석하여 데이터 내부의 규칙성과 패턴을 추출하고 이를 바탕...2025.05.16
-
인공지능 기반 스마트홈 자동화 솔루션 개발2025.01.041. 인공지능 기반 홈 자동화 시스템 개발 사용자의 생활 패턴, 행동 양식을 수집하고 분석하는 기계학습이 가능한 인공지능 모델을 개발해야 합니다. 또한 사용자의 자연어(대화)를 인식, 처리할 수 있는 딥러닝 기술도 필요합니다. 이를 통해 사용자의 욕구와 필요를 파악하고 스마트 기기를 자동으로 제어할 수 있는 홈 자동화 솔루션을 구현할 수 있습니다. 2. 스마트홈 사용자 인터페이스 개발 스마트홈 사업자는 다양한 스마트홈 기기들이 원활하게 연동되도록 지원하는 직관적이고 사용자친화적인 인터페이스를 구축해야 합니다. 사용자가 어플리케이션을...2025.01.04
-
인공지능 기술이 활용되고 있는 사례2025.01.051. 구글 딥마인드사의 인공지능 바둑 프로그램 알파고 알파고는 몬테카를로 기법과 심층 인공신경망 기술을 활용하여 기존의 바둑 프로그램을 뛰어넘었다. 알파고는 정책망, 가치망, 검색이라는 3가지 강력한 무기를 가지고 있으며, 전문가들이 예상하지 못한 독창적인 수를 두어 이세돌 9단을 이겼다. 이를 통해 인공지능 기술의 발전을 보여주었다. 2. ChatGPT ChatGPT는 OpenAI에서 개발한 대화형 인공지능 모델로, 사용자의 질문에 대해 자연스러운 언어로 답변을 제공한다. ChatGPT는 강화학습을 통해 인간의 피드백을 반영하여 ...2025.01.05
-
KL Divergence2025.05.101. KL Divergence KL Divergence는 두 확률 분포 사이의 차이를 측정하기 위해 사용되는 개념입니다. KL Divergence는 주로 정보 이론과 확률 이론에서 사용되며, 두 분포가 얼마나 다른지를 수치적으로 나타냅니다. KL Divergence는 다양한 분야에서 활용되며, 예를 들어 확률 분포 간의 차이를 측정하여 데이터 압축, 정보 검색, 통계 분석 등에 사용될 수 있습니다. 2. KL Divergence와 엔트로피 KL Divergence와 엔트로피는 서로 다른 개념이지만, 정보 이론과 확률론에서 밀접한 관...2025.05.10