
총 53개
-
전기회로설계실습 예비보고서 2. 전원의 출력저항, DMM의 입력저항 측정회로 설계2025.01.171. 건전지의 내부저항 측정 건전지의 내부저항은 매우 작을 것으로 예상되며, 시간이 지날수록 점점 증가할 것이다. 건전지(6V)의 내부저항을 측정하는 회로와 절차를 설계하였다. 10Ω 저항과 Pushbutton을 사용하여 측정에 의한 전력소비를 최소화하였으며, 내부저항을 0.05Ω으로 가정하여 10Ω 저항에서의 소비전력을 계산하였다. 2. DC Power Supply 출력 특성 DC Power Supply의 Output 1의 출력전압을 1V, 최대출력전류를 10mA로 조정한 상태에서 10Ω 저항을 연결하면 최대전류인 10mA를 넘어...2025.01.17
-
실험 10_MOSFET 바이어스 회로 예비 보고서2025.04.271. MOSFET 바이어스 회로 MOSFET을 증폭기로 동작시키기 위해서는 적절한 DC 바이어스가 인가되어야 하며, 이때의 DC 바이어스를 동작점 또는 Q점이라고 부른다. DC 바이어스는 증폭기의 전압 이득과 스윙을 결정하는 중요한 역할을 한다. 이 실험에서는 MOSFET을 이용한 증폭기의 DC 동작점을 잡아주기 위한 바이어스 회로에 대해서 공부하고, 실험을 통하여 그 동작을 확인하고자 한다. 2. 전압분배 MOSFET 바이어스 회로 그림 [10-1]은 가장 기본적인 전압분배 MOSFET 바이어스 회로이다. 이 회로는 소오스 단자에...2025.04.27
-
전자공학실험 10장 MOSFET 바이어스 회로 A+ 예비보고서2025.01.131. MOSFET 바이어스 회로 MOSFET을 증폭기로 동작시키기 위해서는 적절한 DC 바이어스가 인가되어야 하며, 이 때의 DC 바이어스를 동작점 또는 Q점이라고 부른다. DC바이어스는 증폭기의 전압 이득과 스윙을 결정하는 중요한 역할을 한다. 이 실험에서는 MOSFET을 이용한 증폭기의 DC 동작점을 잡아주기 위한 바이어스 회로에 대해서 공부하고, 실험을 통하여 확인하고자 한다. 2. 전압분배 MOSFET 바이어스 회로 일반적으로 증폭기의 동작점을 잡아주기 위해서는 바이어스 회로가 필요하다. [그림 10-1]은 가장 기본적인 전...2025.01.13
-
[A+] 중앙대학교 전기회로 설계실습 결과보고서 13. 발전기 원리 실험2025.04.291. 코일의 인덕턴스 측정 RL 직렬 회로의 time constant를 이용하여 코일의 인덕턴스를 측정하였다. 최대 전압이 6.6 [㎲]에서 704 [mV]로 측정되었고, 최댓값의 0.368배가 걸리는 지점은 18 [㎲]에서 256[mV]로 측정되었다. 이를 이용해 인덕턴스를 계산하면 L = R * τ = 10.1 [㏀] * 11.4 [㎲] = 0.115 [mH]이다. 2. 자석 움직임에 따른 전압 파형 관측 자석을 코일에 넣을 때와 뺄 때 자속의 변화율이 반대가 되어 전압 파형이 반대로 나타나는 것을 확인하였다. 코일과 자석을 뒤...2025.04.29
-
[A+] 중앙대학교 전기회로 설계실습 예비보고서 3. 분압기(Voltage Divider) 설계2025.04.291. 분압기 설계 이 보고서는 전기회로 설계 실습의 일환으로 출력전압이 12V로 고정된 DC 전원을 이용하여 정격전압 3V±10%, 정격전류 3mA±10%인 IC 칩에 전력을 공급할 수 있는 분압기를 설계하는 내용을 다루고 있습니다. 설계 과정에서 부하 효과를 고려하지 않은 잘못된 설계와 부하를 고려한 현실적인 설계를 비교하고, 최종적으로 문제 조건을 만족하는 분압기 회로를 제시하고 있습니다. 1. 분압기 설계 분압기는 전기 회로에서 중요한 역할을 합니다. 입력 전압을 원하는 출력 전압으로 변환하여 다양한 전자 장치에 전력을 공급할...2025.04.29
-
[A+] 중앙대학교 전기회로 설계실습 예비보고서 13. 발전기 원리 실험2025.04.291. 코일의 인덕턴스 측정 RL 직렬회로를 구성하고 Function Generator를 이용해 사각파(0 [V] to 1 [V], duty cycle= 50%)를 입력전압으로 인가한 후 오실로스코프를 이용해 time constant τ를 측정하면 코일의 인덕턴스 L을 구할 수 있다. 2. 자석 삽입에 따른 발생전압 극성 변화 자석을 넣을 때와 뺄 때, 코일을 뒤집어서 넣을 때와 뺄 때 발생전압의 극성이 반대가 될 것이다. 이는 Faraday's Law에 따라 코일(폐회로)를 통과하는 총 자속의 방향이 달라지기 때문이다. 3. 자속 ...2025.04.29
-
[A+] 중앙대학교 전기회로 설계실습 결과보고서 3. 분압기(Voltage Divider) 설계2025.04.291. 분압기 설계 이번 실험을 통해 분압기를 설계할 때, 부하효과를 고려하며 설계해야 한다는 것을 깨달았고, 실험예비 보고서를 작성하며 직접 계산해본 분압기 설계 과정을 통해 다른 조건을 만족하는 분압기도 설계할 수 있을 것이라는 자신감이 생겨났다. 부하효과를 고려하지 않고 분압기 회로를 설계할 경우, 부하를 연결하지 않았을 때에는 출력 전압이 2.998 [V]로 IC Chip의 정격전압 조건을 만족하였지만, 부하를 연결할 경우 기존 저항과 병렬 연결되어 합성저항으로 값이 바뀌어 1.711 [V]라는 전압이 걸리게 되어 IC Chi...2025.04.29
-
전기회로설계실습 2. 전원의 출력저항, DMM의 입력저항 측정회로 설계2025.01.211. 전원의 출력저항 측정 건전지의 출력저항을 측정하는 회로를 설계, 제작, 측정하고 DC Power Supply의 사용법을 익힌다. 부하효과(Loadign effect)를 이해한다. 2. DMM의 입력저항 측정 DMM의 입력저항을 측정하는 회로를 설계, 제작, 측정하고 DC Power Supply의 사용법을 익힌다. 부하효과(Loadign effect)를 이해한다. 3. 옴의 법칙 옴의 법칙을 이용하여 전원의 내부저항과 전력 소비를 계산한다. 4. 전압 분배 법칙 직렬 연결된 저항에 걸리는 전압을 전압 분배 법칙을 이용하여 계산한...2025.01.21
-
전기회로설계실습 12장 예비보고서2025.01.201. 저항, 커패시터, 인덕터의 고주파 특성 측정 이 실험의 목적은 저항, 커패시터, 인덕터의 고주파 특성을 측정하고 이들 소자들이 넓은 주파수 영역에서 어떻게 동작하는지 실험적으로 이해하는 것입니다. 실험에 필요한 기본 장비와 부품들이 제시되어 있으며, 실험 계획서에는 다음과 같은 내용이 포함되어 있습니다: 1. 저항, 커패시터, 인덕터의 고주파 특성을 측정하는 회로 설계 2. R=10 kΩ, C=0.1 μF가 직렬로 연결된 회로의 주파수 응답 분석 3. R=10 kΩ, C=0.1 μF 직렬 회로에서 커패시터가 인덕터로 작동하는...2025.01.20
-
전기회로설계실습 3. 분압기(Voltage Divider) 설계2025.01.211. 분압기(Voltage Divider) 설계 이 실습의 목적은 부하효과(Loading Effect)를 고려한 분압기(Voltage Divider)를 설계, 제작하고 설계와 실험값을 비교, 분석하는 것입니다. 분압기 회로를 설계하고 부하 저항을 고려하여 전압과 전류를 계산하였습니다. 또한 부하가 연결되었을 때와 연결되지 않았을 때의 전압과 전류 변화를 분석하였습니다. 2. 부하효과(Loading Effect) 부하효과는 회로에 부하가 연결되면 회로의 전압과 전류가 변화하는 현상을 말합니다. 이 실습에서는 부하로 IC 칩을 연결하였...2025.01.21