
총 76개
-
IT와 경영정보시스템 2024년 2학기 방송통신대 중간과제물: 인공지능(AI) 학습을 위해 고안된 LLM(Large Language Model)과 LMM(Large Multimodal Model) 비교 및 Deep Learning과의 관계2025.01.261. 인공지능(AI)의 정의 1956년 미국의 수학자이자 과학자인 존 매카시가 '인공지능'이라는 용어를 처음 제안한 이후, 인공지능 연구는 지속적으로 발전해왔으며 여러 분야에서 인간의 능력을 점점 뛰어넘고 있다. 인공지능은 컴퓨터 과학과 방대한 데이터 세트를 활용하여 문제를 해결하는 기술 분야로, 머신러닝과 딥러닝이 인공지능의 하위 분야를 구성한다. 2. 인공지능의 역사 인공지능에 대한 논의는 1950년대부터 시작되었으며, 앨런 튜링, 마빈 민스키, 존 매카시 등의 선구자들이 기계의 사고 가능성을 탐구하며 인공지능 연구의 기반을 마...2025.01.26
-
언어 평가의 5가지 요건과 문제점2025.05.111. 언어 평가의 5가지 요건 언어 평가는 타당도, 실용도, 신뢰도, 진정성, 효과 등 5가지 요건을 충족해야 한다. 타당도는 정확성, 실용도는 일반성, 신뢰도는 일관성, 진정성은 투명성, 효과는 유용성을 의미한다. 이러한 요건이 충족되지 않으면 평가의 신뢰성과 품질이 저하되며, 응용 프로그램에서 예상되는 성과를 달성하기 어려워진다. 2. 언어 평가 요건 미충족 시 문제점 정확성 미충족 시 잘못된 결과 출력, 신뢰성 저하, 응용 프로그램 성능 저하 등의 문제가 발생할 수 있다. 일반성 부족 시 특정 주제/도메인에만 유효하고 새로운 ...2025.05.11
-
인공지능을 이용한 채팅 기능 챗GPT에 대한 조사 및 느낀점2025.05.061. 챗GPT 챗GPT는 OpenAI에서 개발한 대화형 인공지능 언어모델입니다. 챗GPT는 인간과 자연어로 대화하는 것처럼 이전 대화 기록과 문맥을 파악하여 자연스러운 답변을 생성할 수 있습니다. 챗GPT는 Transformer라는 딥러닝 모델 아키텍처를 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해와 생성 능력을 향상시킵니다. 챗GPT는 대화 생성 능력이 뛰어나기 때문에, 챗봇, 가상 비서, 자연어 이해(NLU), 기계 번역(MT) 등의 분야에서 활용될 수 있습니다. 2. 챗GPT의 역사 및 배경 챗GPT 모델은 O...2025.05.06
-
Chat GPT의 장단점2025.01.041. Chat GPT의 정의와 특징 Chat GPT는 Generative Pretrained Transformer의 약자로, 인공지능 분야에서 사용되는 언어 모델 중 하나입니다. 이 모델은 OpenAI에서 개발한 것으로, 대규모의 데이터셋으로 사전학습된 후 다양한 자연어 처리 태스크에 사용될 수 있습니다. 2. Chat GPT의 장점 Chat GPT의 장점으로는 다양한 자연어 처리 태스크에 적용 가능, 대용량 모델, 맞춤형 모델 학습 가능, 유연한 문장 생성 기능, 다양한 데이터셋 사용 가능, 지속적인 업데이트와 발전 등이 있습니다...2025.01.04
-
인공지능의 이해2025.05.101. 인공지능(AI)의 개념 인공지능(AI)은 컴퓨터가 인간의 학습능력, 추론능력, 지각능력을 모방하고 구현하는 기술이다. 이를 위해 컴퓨터 과학의 여러 분야에서 연구가 이루어지고 있으며, 대표적으로는 기계학습, 자연어 처리, 컴퓨터 비전 등이 있다. 2. 인공지능(AI)의 관련 기술 인공지능(AI)은 기계나 컴퓨터 프로그램을 사용하여 인간의 학습 능력, 추론 능력, 판단 능력, 의사 결정 능력 등을 모방하거나 개선하는 기술이다. 이를 위해 기계학습, 딥 러닝, 자연어 처리, 컴퓨터 비전, 강화학습, 자율주행 등 다양한 기술이 사용...2025.05.10
-
마코프 체인(Markov Chain)을 통해 알아보는 GPT의 작동 원리 (파이썬코딩 예제포함)2025.05.091. 마코프 체인 마코프 체인은 상태 공간을 가지고 그 상태들 간의 전이 확률을 나타내는 모델입니다. 이 모델을 사용하여 다양한 예제를 해결할 수 있습니다. 날씨 예측, 텍스트 생성, 주식 시장 예측, 게임 시뮬레이션 등 다양한 분야에서 활용될 수 있습니다. 2. 문장 생성 마코프 체인을 이용한 문장 생성은 자연어 처리와 인공지능 분야에서 흥미로운 주제 중 하나입니다. 이 예제는 텍스트 데이터를 활용하여 이전 단어와 현재 단어의 관계를 파악하고, 그 관계를 기반으로 새로운 문장을 생성하는 방법을 알아봅니다. 3. GPT(Genera...2025.05.09
-
효율적인 텍스트 분류를 위한 fastText 모델2025.01.261. 텍스트 분류 이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룹니다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적합니다. 이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었습니다. 2. 데이터 세트 이 논문에서는 텍스트 분류 작업에 잘...2025.01.26
-
트랜스포머 알고리즘의 개요와 적용 사례2025.01.171. 트랜스포머 알고리즘 트랜스포머 알고리즘은 2017년 구글의 연구팀이 발표한 딥러닝 모델로, 자연어 처리(NLP) 분야에서 혁신적인 변화를 가져왔습니다. 이 알고리즘은 인코더-디코더 구조와 어텐션 메커니즘을 기반으로 하며, 병렬 처리와 확장성을 통해 대규모 데이터를 효율적으로 처리할 수 있습니다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 알고리즘은 인코더와 디코더로 구성됩니다. 인코더는 입력 데이터를 고차원 벡터로 변환하고, 디코더는 이 벡터를 다시 출력 데이터로 변환합니다. 핵심은 어텐션 메커니즘으로, 입력 데이터의 각 요소...2025.01.17
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.041. 인공지능 인공지능은 4차 산업혁명의 핵심 요소로, 그동안 인간의 고유 능력이었던 학습, 추론, 지각, 탐색 등의 능력을 인공적인 컴퓨터 기술로 구현한 것을 의미합니다. 인공지능은 사물인터넷, 클라우드 컴퓨팅, 빅데이터와 함께 4차 산업혁명의 주요 기술 및 연구 분야로 자리잡고 있으며, 일상생활과 경제 활동을 지원하는 중요한 기술로 인식되고 있습니다. 2. 데이터베이스의 활용 데이터베이스는 정형화된 데이터를 저장하고 관리하는 시스템으로, 데이터 마이닝을 통해 정보를 추출하고 가공할 수 있습니다. 또한 비/반정형 텍스트 데이터에서...2025.01.04
-
산업혁명과 비즈니스 ) 인공지능(AI) 기반 우울증 치료 로봇2025.01.211. 인공지능(AI) 기반 우울증 치료 로봇 본 보고서에서 제안하는 아이디어는 '인공지능(AI) 기반 우울증 치료 로봇'입니다. 이는 최첨단 AI 기술인 자연어 처리(NLP), 컴퓨터 비전을 통한 감정 인식, 기계 학습 알고리즘 등 4차 산업혁명 기술을 총체적으로 활용하여 우울증 환자의 심리 치료를 혁신적으로 지원하고 정신 건강 관리를 새로운 차원으로 끌어올리는 시스템입니다. 이 로봇은 환자의 얼굴 표정, 음성 톤, 제스처 등 비언어적 신호를 포착하여 정확한 감정 상태를 인식하고, 대화 내용을 NLP로 분석하여 언어적 감정 표현을 ...2025.01.21