총 31개
-
고분자 중합 결과 레포트2025.01.141. 고분자 중합 고분자 중합 실험을 통해 MMA로부터 PMMA를 합성하였다. 주요 변수로는 반응기의 온도, 교반속도, 중합시간, 개시제의 농도가 있다. 온도가 높을수록 단위시간 동안의 단량체 전환율이 높게 나타나고 평균 분자량은 작아진다. 개시제의 농도를 유지하여 실험을 진행하면, 상대적으로 낮은 온도에서는 개시제의 분해속도가 낮아져서 중합 속도의 하강이 나타난다. 교반속도가 증가하면 고분자 입자간의 합체와 응집에 의해 총 입자수가 감소하여 중합속도가 낮아진다. 또한 높은 rpm에 의해 입자 크기가 작아진다. 중합시간이 증가함에 ...2025.01.14
-
PMMA와 HDPE의 DSC 측정 결과 비교2025.01.121. 열분석 기술 열분석 기술은 온도 변화에 따른 시료의 특성을 분석하는 일련의 기술들을 의미한다. 대표적인 열분석 기술에는 DTA, TG, TMA, DMA 등이 있으며, 각각 온도, 무게, 표면적, 점탄성 등의 특성을 측정할 수 있다. 2. DSC 원리 DSC는 sample pan과 reference pan의 온도 차이를 측정하여 시료의 열적 특성을 분석하는 기술이다. 두 pan의 온도 차이를 최소화하기 위해 미세전류를 흘려보내 온도를 동일하게 만들고, 이때의 미세전류를 온도의 함수로 기록한다. 3. DSC 측정 결과 DSC 측정...2025.01.12
-
DSC 결과보고서/ A+2025.01.121. DSC (Differential Scanning Calorimetry) DSC는 reference물질과 sample물질을 pan에 넣고 온도를 증가시켜주었을 때나 온도를 일정하게 유지한 후 sample과 reference물질의 온도를 동일하게 하기 위해 미세전류를 흘려보내는데 이때의 전류를 온도의 함수로서 기록하는 방법이다. DSC를 통해서 유리전이온도(T_g), 용융온도(T_m), 결정화온도(T_c)를 알 수 있게 된다. DSC에는 Power compensated DSC와 Heat flux DSC 두 종류가 있으며, 이번 실...2025.01.12
-
용해도 예비보고서/A+2025.01.121. 용해도 용해란 용질과 용매가 균일하게 섞이는 현상이다. 용액은 용질의 용해 정도에 따라 불포화 용액, 포화 용액, 과포화 용액으로 구분된다. 과포화 용액에서는 용질이 결정 형태로 석출되며, 불포화 용액에서는 용해도가 증가한다. 용해도는 물질의 특성에 따라 다르며, 기체의 경우 부분압력에 비례하여 증가한다. 용해열은 용해도의 온도 변화와 관련이 있어, 흡열 과정에서는 온도 증가에 따라 용해도가 증가하고, 발열 과정에서는 온도 증가에 따라 용해도가 감소한다. 2. 고분자 용해도 고분자는 용질로 작용하며, 용매의 종류에 따라 goo...2025.01.12
-
용해도 결과보고서/A+2025.01.121. 용해도 용해도란 용매 100g에 녹을 수 있는 용질의 양을 의미한다. 용해도에 있어 가장 중요한 두 가지는 용매의 종류와 온도이다. 용매의 종류에 따라 용질이 녹을 수도 녹지 않을 수도 있기 때문이다. 이때 용액은 과포화, 포화, 불포화 용액으로 나뉘게 된다. 과포화 용액은 용해도보다 많이 있는 용질은 결정의 형태로 석출되게 되는데 이 방법이 정제의 한 종류인 결정법의 원리이다. 여기서 용질이 고분자이면 용매의 종류는 3가지로 나뉜다. 고분자가 용매에 잘 녹는 good solvent, 고분자가 용매에 녹지 않아 침전의 형태로 ...2025.01.12
-
고분자(PMMA) 중합 실험 보고서 (화학공학실험)2025.01.131. 고분자 중합 실험 실험 목표는 Solution polymerization을 통해 Methyl Methacrylate(MMA)를 Poly Methyl Methacrylate(PMMA)로 중합하고, 중합반응의 conversion과 생성된 PMMA의 분자량, 분자량 분포를 GPC를 사용하여 측정, 분석하며 이에 대한 원리를 이해하는 것입니다. 또한 중합반응 공정조건과 생성되는 고분자의 분자량 분포 사이의 상관관계를 이해하는 것입니다. 2. 고분자 중합 반응 원리 고분자 중합은 라디칼 중합 반응으로 이루어지며, 개시반응, 성장반응, ...2025.01.13
-
제거반응_메틸메타크릴레이트(Methylmethacrylate)의 괴상(bulk) 중합 실험 결과보고서2025.01.131. 메틸메타크릴레이트(Methylmethacrylate)의 괴상(bulk) 중합 이번 실험에서는 MMA를 단량체로 이용해 벌크중합(Bulk polymerization)을 통하여 고분자인 PMMA를 중합하여 라디칼 중합 중 벌크 중합의 특징에 대해서 알아보았다. 벌크중합은 고분자 합성공정 중 가장 단순하고 직접적인 방법이다. 단량체와 단량체의 녹는 소량의 개시제, 그리고 경우에 따라 분자량 조절을 위한 사슬이동제만을 투입하며, 반응이 진행됨에 따라 단량체와 고분자만이 반응계의 구성요소가 된다. 벌크중합의 최대의 장점은 불순물이 포함...2025.01.13
-
제거반응_메틸메타크릴레이트(Methylmethacrylate)의 괴상(bulk) 중합 실험 예비보고서2025.01.131. 벌크(bulk)중합 벌크중합은 용매(solvent)나 분산매체를 사용하지 않고 단량체(monomer)와 개시제만으로 중합하여 중합체를 얻는 라디칼 중합법을 말한다. 벌크 중합은 기체 및 고체상에서도 가능하지만 주로 액체 상태에서 행해지며 간편하면서도 고순도 및 높은 분자량의 중합체를 얻을 수 있다는 장점이 있다. 하지만 반응 시 열 제거가 어렵고 경우에 따라서는 높은 분자량 때문에 생성된 중합체가 단량체에 용해되지 않으며 또한 반응계의 점도가 높아 중합에 기술적인 문제점이 뒤따른다. 2. 개시제 벌크중합에서 사용되는 개시제는 ...2025.01.13
-
중공실 PMMA 벌크중합2025.01.131. 라디칼 중합 메커니즘 라디칼 중합 반응은 개시반응, 전개반응, 종결반응으로 총 3단계로 진행됩니다. 개시 반응에서는 개시제 AIBN에 열을 가하면 라디칼이 생기면서 nitrogen 가스를 생성하고, 생성된 라디칼과 첫 번째 단량체 MMA가 반응하여 MMA의 탄소에 라디칼이 생깁니다. 전개 반응에서는 개시 반응한 뒤로 연쇄적으로 MMA를 붙여 넣어서 고분자 사슬을 만듭니다. 종결 반응은 라디칼이 소멸되는 단계로, Methyl methacrylate는 보통 recombination이 아닌 disproportionation반응을 통...2025.01.13
-
중공실 suspension 중합 결레2025.01.131. 현탁중합 현탁중합은 단량체와 개시제를 비활성 매질 속에서 0.01~1mm 정도의 크기로 분산시키는 중합방법입니다. 개시제가 물에 녹지 않아 모노머와 개시제가 섞여있고, 그 농도가 높아 중합도는 상대적으로 낮습니다. 장점으로는 중합열의 제거가 쉽고, 고분자 크기가 작아서 편리합니다. 하지만 연속 공정이 어려우며 단량체를 분산시켜야 하므로 계속 휘저어줘야하는 것이 필요합니다. 2. 유화중합 유화중합은 물에 녹지 않는 단량체를 물에 유화시키는 방법입니다. 중화열을 쉽게 조절할 수 있다는 장점이 있으며, 점도 조절이 쉽고 균일하게 반...2025.01.13