총 2개
-
Data Preparation2025.01.131. Feature Extraction and Portability Feature extraction은 다양한 출처(센서, 이미지, 웹 기록, 침입감지, 문서 등)에서 데이터를 얻는 것을 말한다. Portability는 다른 유형으로 데이터를 변환하는 것을 말한다. 포터빌리티의 예로는 이산화, 이진화, LSA, SAX, DWT, DFT 등이 있다. 이러한 변환 방법들은 데이터의 크기를 줄이거나 다른 형태로 표현하는 데 사용된다. 2. Data Cleaning 데이터 클리닝은 누락되거나 오류가 있는 데이터를 제거하는 것을 말한다. 누...2025.01.13
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13