
총 76개
-
영문 ) Real-world business problem -problems that occur in the business environment (or2025.01.201. Real-world business problem 기업 환경(또는 직장)에서 발생하는 문제로, 데이터 분석을 통해 해결할 수 있는 문제입니다. 예를 들어 온라인 광고 효과가 낮거나 새로운 패션 제품에 대한 고객 만족도가 낮은 경우 등입니다. 2. 연구 목적 온라인 광고 효과를 높이기 위한 요인 탐색, 고객 만족도를 높이기 위한 제품 속성 탐색 등이 연구의 주요 목적입니다. 3. 데이터 소셜 네트워크 플랫폼의 리뷰 텍스트, 내부 데이터베이스의 구매 데이터 등이 필요합니다. 이를 통해 고객이 중요하게 여기는 요인을 파악하고 고객 ...2025.01.20
-
자연어처리 대표논문 읽기 과제2025.01.121. 신경 기계 번역 신경 기계 번역은 최근에 제안된 기계 번역 접근법으로, 기존의 통계 기계 번역과 달리 단일 신경망을 구축하여 번역 성능을 극대화하는 것을 목표로 합니다. 본 논문에서는 기존 신경 기계 번역 모델의 한계를 극복하기 위해 RNN 검색 모델을 제안하였고, 이를 통해 소스 문장의 관련 단어나 주석과 대상 단어를 올바르게 정렬할 수 있게 되었습니다. 실험 결과 제안된 모델이 기존 인코더-디코더 모델을 크게 능가하고 문장 길이에 더 견고한 것으로 나타났습니다. 2. 기계 번역 기계 번역은 소스 문장 x의 조건부 확률 p(...2025.01.12
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16
-
프롬프트 엔지니어의 소개와 미래 (feat. 인공지능)2025.05.051. 생성형 AI 생성형 AI(Generative AI)는 기존 예제에서 학습하여 새로운 콘텐츠, 패턴 또는 데이터를 생성하는 데 중점을 둔 인공 지능의 한 분야입니다. 고급 모델과 기술을 사용하여 텍스트, 이미지, 음악 및 비디오와 같은 영역에서 사람과 유사한 출력을 생성합니다. 생성형 AI의 주요 특징에는 대규모 데이터 세트로부터의 학습, 확률적 모델링, 창의성, 적응성 및 고품질 출력이 포함됩니다. 2. GPT GPT는 Generative Pre-trained Transformer의 약자로 자연어 처리 작업을 위해 설계된 일종...2025.05.05
-
PC활용_구글 CEO 선다 피차이는 양자 컴퓨터에 대한 중요성을 언급했다. 양자 컴퓨터의 정의와 최근 이슈 및 각 나라의 발전 동향에 대해 정리하여 제출하시오.2025.04.291. 양자 컴퓨터 양자 컴퓨터는 현재의 컴퓨터는 정보를 처리하는 원리를 기반으로 하여 '양자'라는 새로운 성질을 더하여서 기능을 향상시킨 컴퓨터이다. 중첩은 하나의 입자에 여러 가지의 상태가 확률적으로 동시에 존재한다는 것을 말한다. 양자 얽힘은 한 번 짝을 이뤄서 얽혀져 있는 둘 이상의 입자는 멀리 떨어져 있다고 하여도 어느 한 입자의 상태가 변화를 하면, 동시에 멀리 떨어져 있는 다른 입자에게도 반응을 보이는 특성을 가지고 있다. 양자 상태는 측정을 하기 전에는 정확하게 알 수 없고, 중첩의 상태로 표현이 되어서 결과를 확률적으...2025.04.29
-
자연언어처리4공통형 7강까지 학습한 모델 알고리즘 중 하나를 적용한 논문에서 모델이 어떻게 사용되었는지 기술2025.01.261. BERT 모델 적용 논문 "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"에서 BERT 모델은 자연어 처리(NLP) 분야의 다양한 언어 이해 작업을 해결하기 위해 사용되었습니다. BERT는 문맥 이해, 단어의 다의성 해결, 사전 훈련과 미세 조정, 모델의 일반화 능력 향상 등의 문제를 다루고자 했습니다. 이를 위해 BERT는 양방향 문맥 처리, Masked Language Model, Next Sentence Prediction ...2025.01.26
-
인공지능의 역사와 현 수준2025.05.011. 인공지능의 역사 인공지능(AI)의 역사는 1940년대부터 시작되었으며, 주요 이정표로는 앨런 튜링의 튜링 테스트 제안, 1950-60년대의 초기 AI 프로그램 개발, 1970-80년대의 전문가 시스템 개발, 1980-90년대의 신경망 및 기계 학습 알고리즘 개발, 2000년대의 딥러닝 알고리즘 개발 등이 있다. 최근 몇 년 동안 AI는 자율주행 차량, 로봇 공학, 가상 비서, 개인화된 의학 등 다양한 분야에서 빠르게 발전하고 있다. 2. 인공지능의 현 수준 인공지능은 자연어 이해, 이미지 인식, 의사결정 등 인간의 지능이 필요...2025.05.01
-
ChatGPT의 진화 3.5-turbo, 4.0, 4o의 비교와 혁신2025.01.151. ChatGPT 3.5-turbo ChatGPT 3.5-turbo는 2023년에 출시된 모델로, GPT-3 아키텍처를 기반으로 하며 속도와 효율성이 크게 향상되었습니다. 이 모델은 빠르고 효율적인 성능을 제공하며, 기본적인 텍스트 생성, 번역, 요약 등의 기능을 수행합니다. 2. ChatGPT 4.0 ChatGPT 4.0은 2024년에 출시된 모델로, GPT-4 아키텍처를 기반으로 합니다. 이 모델은 더 높은 성능과 향상된 언어 이해 및 생성 능력을 제공합니다. 특히 문맥을 더 잘 이해하고 자연스러운 대화를 생성할 수 있습니다....2025.01.15
-
트랜스포머 알고리즘의 개요와 적용 사례2025.01.171. 트랜스포머 알고리즘 트랜스포머 알고리즘은 2017년 구글의 연구팀이 발표한 딥러닝 모델로, 자연어 처리(NLP) 분야에서 혁신적인 변화를 가져왔습니다. 이 알고리즘은 인코더-디코더 구조와 어텐션 메커니즘을 기반으로 하며, 병렬 처리와 확장성을 통해 대규모 데이터를 효율적으로 처리할 수 있습니다. 2. 트랜스포머 알고리즘의 구조 트랜스포머 알고리즘은 인코더와 디코더로 구성됩니다. 인코더는 입력 데이터를 고차원 벡터로 변환하고, 디코더는 이 벡터를 다시 출력 데이터로 변환합니다. 핵심은 어텐션 메커니즘으로, 입력 데이터의 각 요소...2025.01.17
-
딥러닝의 최신 동향: ChatGPT, Gemini, Lamma, Claude, Hyper Clovax 등2025.01.171. Gemini Gemini는 구글의 AI 연구팀이 개발한 차세대 언어 모델로, 인간 수준의 이해력과 자연스러운 대화를 목표로 하고 있습니다. Gemini는 다중 언어 지원, 컨텍스트 이해, 확장성 등의 특징을 가지고 있으며, 구글 검색 엔진, 음성 비서, 번역 서비스 등 다양한 애플리케이션에 적용되고 있습니다. 2. Lamma Lamma는 Meta(구 Facebook)의 AI 연구팀이 개발한 새로운 딥러닝 모델로, 텍스트 생성, 이미지 인식, 음성 인식 등 다양한 분야에서 활용될 수 있습니다. Lamma는 대규모 사전 학습, 적...2025.01.17