
총 76개
-
논리모델의 개념과 특성, 프로그램 평가 및 사례2025.05.101. 논리모델의 개념과 특성 논리모델은 실생활의 복잡한 문제를 수학적으로 표현하고 해결하는 도구입니다. 명제 논리학의 개념을 기반으로 하며, 간결한 논리적 추론을 가능하게 합니다. 논리모델의 가장 중요한 특성은 절대적인 정확성으로, 모호함이나 불확실성이 없어 프로그램의 신뢰성과 안정성을 향상시킬 수 있습니다. 또한 논리모델은 실제 세계에 적용하고 이해하기 쉬운 기호와 연산자를 사용하여 사용자가 문제를 쉽게 이해하고 해결할 수 있도록 돕습니다. 2. 논리모델을 이용한 프로그램 평가 프로그램 평가에서 논리모델은 두 가지 방식으로 활용됩...2025.05.10
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16
-
IT와 경영정보시스템 2024년 2학기 방송통신대 중간과제물: 인공지능(AI) 학습을 위해 고안된 LLM(Large Language Model)과 LMM(Large Multimodal Model) 비교 및 Deep Learning과의 관계2025.01.261. 인공지능(AI)의 정의 1956년 미국의 수학자이자 과학자인 존 매카시가 '인공지능'이라는 용어를 처음 제안한 이후, 인공지능 연구는 지속적으로 발전해왔으며 여러 분야에서 인간의 능력을 점점 뛰어넘고 있다. 인공지능은 컴퓨터 과학과 방대한 데이터 세트를 활용하여 문제를 해결하는 기술 분야로, 머신러닝과 딥러닝이 인공지능의 하위 분야를 구성한다. 2. 인공지능의 역사 인공지능에 대한 논의는 1950년대부터 시작되었으며, 앨런 튜링, 마빈 민스키, 존 매카시 등의 선구자들이 기계의 사고 가능성을 탐구하며 인공지능 연구의 기반을 마...2025.01.26
-
인공지능(AI) 적용 사례 분석 - 현황, 사례, 영향도, 미래2025.01.231. 인공지능(AI) 발전 현황 2024년 현재, 인공지능(AI)은 기술적 성숙기에 접어들면서, 단순한 이론적 연구에서 다양한 실제 응용으로 빠르게 확장되고 있습니다. 초기에 AI는 데이터 처리와 자동화된 작업 수행에 주로 사용되었으나, 최근에는 생성형 AI 기술이 눈부신 성장을 이루어냈습니다. 대표적인 예로 <ChatGPT>와 <DALL-E>와 같은 모델은 대규모 자연어 처리와 이미지 생성에서 큰 발전을 보였으며, 이를 통해 콘텐츠 제작과 업무 생산성 향상에 실질적인 기여를 하고 있습니다. 2. AI 기술의 발전 단계 첫 단계로는...2025.01.23
-
노션AI(Notion AI)란2025.05.021. 노션AI 소개 노션AI는 인공 지능과 기계 학습 기능을 통합하여 기능을 향상시키는 소프트웨어 플랫폼입니다. 개인과 기업이 정보를 정리하고, 다른 사람과 협업하고, 워크플로를 간소화할 수 있도록 설계된 올인원 작업 공간입니다. 노션AI는 자연어 처리(NLP)를 사용하여 인간의 언어를 이해하고 해석하며, 데이터를 분석하고 분류할 수 있어 사용자가 필요한 정보를 쉽게 찾을 수 있습니다. 또한 기계 학습 알고리즘을 사용하여 개별 사용자에 대한 기능을 개인화합니다. 2. 노션AI의 역사 노션AI는 2016년에 Ivan Zhao, Sim...2025.05.02
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10
-
ChatGPT 배경과 활용2025.05.051. ChatGPT 개요 ChatGPT는 OpenAI에서 개발한 대화형 인공지능 언어 모델입니다. 이 모델은 GPT-3.5 아키텍처를 기반으로 하며, 2021년 이전에 배운 대규모 데이터셋을 사용하여 학습되었습니다. 이 모델은 13억 개의 매개 변수를 가지며, 이는 GPT-3 모델에서 사용된 매개 변수의 약 116배에 해당합니다. 2. ChatGPT의 활용 ChatGPT는 인공지능 연구자들이 대화형 인공지능을 개발하는 데 필요한 자원을 제공합니다. 또한, ChatGPT는 챗봇, 자동 응답 시스템, 자동 번역 시스템 등 다양한 응용 ...2025.05.05
-
ChatGPT란2025.04.281. ChatGPT ChatGPT(Conversational Generative Pre-trained Transformer)는 OpenAI에서 개발한 언어 생성 모델입니다. 인간이 생성한 텍스트의 대규모 데이터 세트를 사용하여 훈련되며 인간과 유사한 언어를 생성할 수 있습니다. 이 모델은 2018년에 처음 소개되었으며 이후 다양한 버전으로 업데이트되었습니다. ChatGPT의 최신 버전인 ChatGPT-3에는 1,750억 개의 매개변수가 있으며 언어 번역, 질문 답변 및 텍스트 완성과 같은 광범위한 자연어 처리 작업을 수행할 수 있습...2025.04.28
-
A+ 받은 컴퓨터식 사고와 상담 심리학 _기말과제_ 챗봇상담 경험 보고서_워봇2025.04.281. 심층기계학습(딥러닝) 심층기계학습(딥러닝)은 일반적인 기계 학습 모델보다 더 깊은 신경망 계층 구조를 이용하는 기계 학습 기술이다. 주로 여러 개의 은닉층(hidden layer)으로 구성된 인공 신경망을 활용하며, 이는 인간 뇌의 신경 회로망을 모사한 것이다. 심층 기계 학습은 문제를 해결하기 위해 스스로 필요한 특징을 찾아 적절하게 표현하는 학습 능력이 뛰어나 사진에서 개체 인식, 기계 번역, 바둑 등의 분야에서 뛰어난 성능을 보인다. 2. 텍스트 생성 딥러닝 알고리즘 워봇 챗봇은 구글과 오픈AI의 텍스트 생성 딥러닝 알고...2025.04.28
-
환자-의사 의사소통과 건강 교육을 촉진하는 AI 기반 자연어 인터페이스2025.05.111. AI 기반 자연어 인터페이스의 개념과 의의 환자와 의사 간 원활한 의사소통은 정확한 진단과 치료를 위해 매우 중요하며, 환자들의 건강 교육은 질병 예방과 적절한 자가 관리를 위해 필수적입니다. AI 기반 자연어 인터페이스는 이러한 환자-의사 의사소통과 건강 교육을 개선하고 촉진하는데 기여합니다. 2. AI 기반 자연어 인터페이스의 활용 방법과 장점 AI 기술은 자연어를 이해하고 환자들의 질문과 우려를 정확하게 이해할 수 있습니다. 또한 AI 기반 자연어 인터페이스는 환자의 질문에 즉각적으로 응답하여 의사소통의 속도를 향상시킬 ...2025.05.11