
총 23개
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
텐서플로우 딥러닝 (Tic-Tac-Toe)2025.05.051. 데이터 세트 tic-tac-toe.csv 파일에는 TL, TM, TR, ML, MM, MR, BL, BM, BR 속성과 class 속성이 포함되어 있습니다. TL, TM, TR, ML, MM, MR, BL, BM, BR 속성은 각 게임 보드의 위치를 나타내며, 값은 'x', 'o', 'b'로 표현됩니다. class 속성은 게임 결과를 나타내며, 'TRUE'는 x가 이겼음을, 'FALSE'는 x가 졌음을 의미합니다. 2. 2층 신경망 입력 층은 9D(TL, TM, TR, ML, MM, MR, BL, BM, BR)를 받습니다. 은...2025.05.05
-
인공지능이 어떻게 사람처럼 생각할 수 있는가2025.05.081. Pavlov's Dog Experiment Pavlov의 개 실험은 동물 학습과 조건 반사에 대한 연구를 통해 일반화된 원리를 밝혀냈습니다. 이 실험은 1890년대부터 1900년대 초반에 걸쳐 진행되었으며, 현대 심리학과 행동 심리학의 중요한 기반이 되었습니다. Pavlov의 실험은 주로 개를 대상으로 이루어졌는데, 개에게 먹이를 줄 때 종소리를 울리는 등의 조건을 주고 타액 분비 반응을 관찰했습니다. 초기에는 음식을 보고 타액이 분비되는 것이 개의 자연스러운 반응이었지만, 종소리와 먹이의 연결이 지속되면서 개들은 종소리만으로...2025.05.08
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
인공지능도 자아의식이 있을까? (sense of identity)2025.05.081. 인공지능의 발전 최근 몇 년 동안 컴퓨터에 더 많은 뉴런을 포함하여 인공지능의 발전이 가속화되고 있습니다. 이로 인해 컴퓨터가 더 지능적이고 복잡한 작업을 수행할 수 있게 되었습니다. 예를 들어, 인공지능은 이제 차량을 운전하고, 질병을 진단하고, 창의적인 콘텐츠를 생성할 수 있습니다. 2. 인공지능의 도전과 위험 인공지능의 발전은 인간과 컴퓨터 간의 관계에 큰 영향을 미칠 것입니다. 컴퓨터는 점점 더 지능적이 되고 인간이 할 수 있는 많은 일을 할 수 있게 될 것입니다. 이는 컴퓨터가 새로운 방식으로 우리의 삶에 통합될 것임...2025.05.08
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
인공지능과 기계학습 중간정리2025.01.131. 예측자 예측자는 Y=AX의 관계가 선형일 때 사용된다. 예측자를 구하는 과정은 다음과 같다: 1) 임의의 값 A 설정 2) 주어진 데이터의 X를 대입하여 예측값 Y 출력 3) 목표값과 출력값을 비교하여 오차(error) 구하기 4) 오차가 양수인 경우 A를 늘려야 하며, 오버슈팅을 방지하기 위해 A를 조금씩만 조정해야 한다. 5) 이러한 과정을 반복(iteration)하여 A를 조정해나가는 것이 예측자 구하기의 핵심이다. 2. 분류자 분류자는 X·Y 평면에서 두 그룹을 분류하는 선형분류자를 말한다. 분류자 학습 과정은 다음과 ...2025.01.13
-
인공지능과 기계학습 기말정리2025.01.131. 신경망의 오차 출력계층의 오차와 은닉계층의 오차를 구하는 방법에 대해 설명합니다. 출력계층의 오차는 목표값과 출력값의 차이이지만, 은닉계층에는 목표값이 존재하지 않기 때문에 출력계층의 오차를 재조합하여 은닉계층의 오차를 구합니다. 이러한 방식을 역전파라고 합니다. 2. 경사하강법 오차함수의 기울기에 따라 가중치를 조정하는 경사하강법에 대해 설명합니다. 오차함수로는 제곱오차 방식을 사용하며, 기울기의 부호에 따라 가중치를 반대 방향으로 조정합니다. 오버슈팅을 방지하기 위해 기울기가 완만해질수록 조금씩만 움직이도록 합니다. 3. ...2025.01.13
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08