
총 23개
-
두뇌의 생물학적 특징과 발달에 대한 이해2025.04.281. 두뇌의 생물학적 특징 인간의 뇌는 척수와 함께 중추신경계를 구성하며, 약 천억 개의 신경세포로 이루어져 있습니다. 뇌는 감정, 기억, 언어, 사고 등 고등한 정신 활동을 담당하며, 대뇌, 사이뇌, 소뇌, 뇌간 등의 주요 구조로 이루어져 있습니다. 각 부분은 서로 다른 기능을 수행하며, 이들의 유기적인 작용을 통해 인간의 행동과 의식이 조절됩니다. 2. 두뇌의 발달 두뇌의 발달은 신경세포의 증가가 아닌 신경망의 연결이 더 촘촘해지고 복잡해지는 과정입니다. 유아기에 다양한 자극을 받으면 필요한 신경망이 강화되고, 사용되지 않는 신...2025.04.28
-
인공지능과 기계학습 중간정리2025.01.131. 예측자 예측자는 Y=AX의 관계가 선형일 때 사용된다. 예측자를 구하는 과정은 다음과 같다: 1) 임의의 값 A 설정 2) 주어진 데이터의 X를 대입하여 예측값 Y 출력 3) 목표값과 출력값을 비교하여 오차(error) 구하기 4) 오차가 양수인 경우 A를 늘려야 하며, 오버슈팅을 방지하기 위해 A를 조금씩만 조정해야 한다. 5) 이러한 과정을 반복(iteration)하여 A를 조정해나가는 것이 예측자 구하기의 핵심이다. 2. 분류자 분류자는 X·Y 평면에서 두 그룹을 분류하는 선형분류자를 말한다. 분류자 학습 과정은 다음과 ...2025.01.13
-
인공지능 AI 개념과 적용분야/ 장점과 단점/ 긍정적인 활용사례/ 문제점과 해결방안 제언2025.01.151. 인공지능 (AI) 개념 1956년 여름 다트마우스(Dartmouth)대학에서 열린 '생각하는 기계'에 대한 토론에서 처음 등장한 인공지능 (AI)은 Artificial Intelligence의 줄임말로서 인간의 인지능력, 학습능력, 이해능력, 추론능력과 같은 인간이 컴퓨터보다 더 잘하는 능력에 대해 컴퓨터가 묘사하고 실현하는 연구하는 컴퓨터공학의 한 분야이다. 2. 인공지능 주요기술 인공지능은 컴퓨터 공학뿐만 아니라 다양한 학문이 같이 적용되기 때문에 그만큼 다양한 인공지능 기술이 개발되었고, 사용되고 있다. 크게 주요 기술은...2025.01.15
-
뇌와 인간 (AI vs. I)2025.05.071. 인공지능의 상식 이해 부족 인간은 생활 속 경험을 통해 많은 세상의 상식을 이해하고 있지만, 인공지능의 기계학습과 심층 신경망은 이러한 상식과 같은 모델을 만들지 못합니다. 인공지능은 연속해서 다음에 이어질 가장 높은 단어를 예측하는 데는 뛰어나지만, 인간보다 상식에 있어선 부족합니다. 이는 인공지능이 실제로 인간들과 상호작용하기 위해서는 언어뿐만 아니라 일상생활에서도 벌어질 수 있는 자연스러운 상황을 끊임없이 학습해야 한다는 것을 의미합니다. 2. 인공지능의 인과관계 이해 부족 인간은 꽃병을 떨어트리면 꽃병이 산산조각이 나고...2025.05.07
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
챗GPT에게 묻는 인류의 미래 - 김대식 교수와 생성인공지능과의 대화 1장 발췌 요약2025.05.041. 챗GPT의 정의와 '학습' 챗GPT는 오픈 AI가 개발한 대규모 언어 모델이다. 인간처럼 텍스트를 이해하고 생성할 수 있도록 학습되었다. 또 질문에 대답하기, 정보 제공하기, 글쓰기 돕기와 같은 다양한 작업을 보조할 수 있다. 챗GPT는 GPT(Genterative Pre-training Transformer 생성적 사전학습 트랜스포머) 모델의 변형으로, 한 문장 안에서 앞에 오는 단어의 맥락을 고려해 다음 단어를 예측하도록 학습되었다. 2. 작동원리: 트랜스포머와 신경망 챗GPT 모델은 텍스트처럼 순차적 데이터를 처리하는 데...2025.05.04
-
인공지능이 어떻게 사람처럼 생각하게 되는가2025.05.081. 파블로프의 개 실험 파블로프의 개 실험은 동물의 학습과 조건부 반사에 대한 연구를 통해 일반화된 원리를 밝힌 실험입니다. 개에게 음식과 종소리를 연결시켜 종소리만으로도 침샘 분비 반응이 나타나는 조건부 반사를 관찰하였습니다. 이 실험은 행동심리학과 학습 이론에 큰 영향을 주었습니다. 2. 인공 신경망의 학습 인공 신경망은 입력과 출력 사이의 연관성을 학습하는 과정을 거칩니다. 초기에는 무작위로 설정된 가중치와 편향을 학습 데이터를 통해 조정하여 정확한 출력을 만들 수 있도록 개선됩니다. 이는 파블로프의 개 실험에서 관찰된 자극...2025.05.08
-
슈퍼 마리오 - 인공지능은 어떻게 게임을 할까?2025.05.081. 데이터 기반 학습 인공지능은 슈퍼 마리오 게임 플레이 데이터를 사용하여 게임의 규칙과 패턴을 학습합니다. 이를 통해 어떤 상황에서 점프를 해야 하는지, 어떤 적과의 접촉을 피해야 하는지 등을 학습하게 됩니다. 2. 강화 학습 인공지능은 게임 플레이를 통해 보상과 벌점을 받고, 이를 통해 자동으로 학습하게 됩니다. 예를 들어 도착 지점에 도달하면 보상을 받고, 적에게 맞으면 벌점을 받는 식으로 학습하면서 게임을 플레이합니다. 3. 신경망과 패턴 인식 인공지능은 신경망 모델을 사용하여 게임 화면의 정보를 분석하고, 적의 위치, 장...2025.05.08
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
방통대 [딥러닝의통계적이해] 2024 출석과제물 (30점 만점 인증 / 표지제외 18페이지 분량 / 코드 및 해설 포함)2025.01.251. Teachable Machine을 이용한 이미지 분류 Teachable Machine에 판다 이미지 54개와 레서판다 이미지 21개를 각 클래스로 나누어 입력하고 학습시켰다. 학습 시도 횟수인 에포크는 50으로 설정되었으며, 배치 크기는 16으로 설정되었다. 학습률은 0.001로 설정되어 있으며, 학습이 완료된 모델에 테스트 이미지를 입력한 결과 판다와 레서판다의 사진 또는 그림에 대해 대부분 100%로 판단하고 정답을 맞추는 것을 확인할 수 있었다. 레서판다 이미지 샘플 수 부족을 보완하기 위해 학습률을 0.00057로 낮추...2025.01.25