
총 23개
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
설명 가능한 인공지능, XAI (Explainable Artificial Intelligence)2025.05.101. 인공지능 신경망의 동작 인공지능 신경망의 동작은 사람의 뇌와 유사하지만, 내부 동작과 의사 결정 과정을 직접적으로 이해하기 어렵다. 이는 다른 사람의 뇌 안에서 일어나는 생각을 이해하기 어려운 것과 유사하다. 2. XAI (Explainable Artificial Intelligence) XAI는 인공지능 모델의 내부 동작과 의사 결정 과정을 설명 가능하게 만드는 기술을 개발하는 것을 목표로 한다. 이를 통해 모델의 예측에 영향을 미치는 요인을 이해하고 신뢰성을 높일 수 있다. 3. XAI 기술 특성 XAI는 시각화, 중요도 ...2025.05.10
-
챗GPT에게 묻는 인류의 미래 - 김대식 교수와 생성인공지능과의 대화 1장 발췌 요약2025.05.041. 챗GPT의 정의와 '학습' 챗GPT는 오픈 AI가 개발한 대규모 언어 모델이다. 인간처럼 텍스트를 이해하고 생성할 수 있도록 학습되었다. 또 질문에 대답하기, 정보 제공하기, 글쓰기 돕기와 같은 다양한 작업을 보조할 수 있다. 챗GPT는 GPT(Genterative Pre-training Transformer 생성적 사전학습 트랜스포머) 모델의 변형으로, 한 문장 안에서 앞에 오는 단어의 맥락을 고려해 다음 단어를 예측하도록 학습되었다. 2. 작동원리: 트랜스포머와 신경망 챗GPT 모델은 텍스트처럼 순차적 데이터를 처리하는 데...2025.05.04
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
전남대 6축로봇실험(기계공학실험)2025.05.101. 2차원 Task space를 갖는 로봇 프로그래밍 실험에서는 삼각형을 그릴 때 move L을, 원을 그릴 때 move P를 사용하여 로봇을 제어하였다. 용지 위의 원하는 지점에 점을 찍으면 해당 좌표(x, y)를 프로그램에 입력하여 웨이포인트를 설정하였다. 다음 점을 찍을 때는 처음 위치에서의 상대적인 이동량(x, y)을 지정하여 웨이포인트를 설정하였다. 실행 시 로봇이 선을 그리는 작업을 수행하였으며, 원을 그릴 때는 곡률을 고려하여 더 많은 웨이포인트를 설정하면 완벽한 원에 가까운 형상을 만들 수 있다. 2. 로봇 암의 모...2025.05.10
-
개미도 뇌가 있을까? (ant brain)2025.05.081. 범고래의 뇌 범고래의 뇌는 인간의 뇌보다 크기가 크고 더 많은 뉴런을 가지고 있지만, 인간의 지능은 단순히 크기나 뉴런 수로만 측정할 수 없는 개념입니다. 인간의 뇌는 복잡한 연결망, 창의성, 추상적 사고, 사회적 지능 및 문화적 영향력과 관련이 있습니다. 2. 해파리의 뇌 해파리는 뇌가 없지만 신경 네트워크의 분산된 구조를 통해 지능적인 움직임을 보입니다. 해파리는 감각 세포와 근육 세포가 분산되어 있으며, 신경망을 통해 연결되어 있어 감각 정보를 처리하고 움직임을 조정할 수 있습니다. 3. 곤충의 뇌 곤충들은 작은 몸집에도...2025.05.08
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08
-
뇌와 인간 (AI vs. I)2025.05.071. 인공지능의 상식 이해 부족 인간은 생활 속 경험을 통해 많은 세상의 상식을 이해하고 있지만, 인공지능의 기계학습과 심층 신경망은 이러한 상식과 같은 모델을 만들지 못합니다. 인공지능은 연속해서 다음에 이어질 가장 높은 단어를 예측하는 데는 뛰어나지만, 인간보다 상식에 있어선 부족합니다. 이는 인공지능이 실제로 인간들과 상호작용하기 위해서는 언어뿐만 아니라 일상생활에서도 벌어질 수 있는 자연스러운 상황을 끊임없이 학습해야 한다는 것을 의미합니다. 2. 인공지능의 인과관계 이해 부족 인간은 꽃병을 떨어트리면 꽃병이 산산조각이 나고...2025.05.07
-
인공지능이 어떻게 사람처럼 생각하게 되는가2025.05.081. 파블로프의 개 실험 파블로프의 개 실험은 동물의 학습과 조건부 반사에 대한 연구를 통해 일반화된 원리를 밝힌 실험입니다. 개에게 음식과 종소리를 연결시켜 종소리만으로도 침샘 분비 반응이 나타나는 조건부 반사를 관찰하였습니다. 이 실험은 행동심리학과 학습 이론에 큰 영향을 주었습니다. 2. 인공 신경망의 학습 인공 신경망은 입력과 출력 사이의 연관성을 학습하는 과정을 거칩니다. 초기에는 무작위로 설정된 가중치와 편향을 학습 데이터를 통해 조정하여 정확한 출력을 만들 수 있도록 개선됩니다. 이는 파블로프의 개 실험에서 관찰된 자극...2025.05.08