총 37개
-
미분방정식을 이용해 생체시계의 비밀 해결2025.05.041. 생체시계 일반적으로 온도가 오르게 되면 다른 생체반응은 빨라지는데, 이와는 대조적으로 생체시계의 반응은 환경이나 온도와는 상관없이 일정한 리듬을 갖고 있다. 생체시계로 인한 신체 리듬이 어떻게 모든 사람에게 공통적으로 나타나는지를 규명하기 위해 전 세계의 과학자들은 생체시계 원리를 밝히려 노력했다. KAIST 수리과학과의 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 불구하고 생체시계의 속도를 유지하는 원리를 발견했다. 2. 피리어드2 단백질 KAIST 연구진은 이 같은 이유를 피리어드2라는 핵심 단백질...2025.05.04
-
RLC회로의 감쇠진동2025.05.011. RLC회로의 감쇠진동 RLC회로에서 저항이 존재하면 전자기 에너지가 열에너지로 전환되어 빠져나가기 때문에 전하와 전류, 전압의 진동 진폭이 점차 줄어드는 감쇠진동이 발생한다. 감쇠진동을 기술하는 미분방정식은 L(d^2q/dt^2) + R(dq/dt) + q/C = 0이며, 그 해는 q = Qe^(-Rt/2L)cos(ω't + φ)로 표현된다. 여기서 ω'은 감쇠가 있을 때의 각진동수로 감쇠가 없을 때의 각진동수 ω보다 작다. 2. 저항소모율 RLC회로의 감쇠진동을 정량적으로 계산하기 위해서는 일률(저항소모율)에 관한 식을 세워...2025.05.01
-
RLC회로의 감쇠진동에 대한 정리2025.05.021. RLC회로의 감쇠진동 기술 RLC회로에서 저항이 존재하면 전체 회로 내 전자기 에너지(전기 에너지와 자기 에너지의 합)가 일정하지 않습니다. 저항에서 전자기 에너지가 열에너지로 전환되어 빠져나가기 때문에 전하와 전류, 퍼텐셜차의 진동은 진폭이 점차 줄어드는 형태로 나타나는데, 이를 감쇠진동(damped oscillation)이라고 합니다. 2. 저항소모율 RLC회로의 감쇠진동을 보다 정량적으로 계산하기 위해서는 일률(저항소모율)에 관한 식을 세워야 합니다. 전하량의 변화(dq), 전자기 에너지의 변화(dU), 옴의 법칙(Ohm...2025.05.02
-
미분방정식과 패러데이 법칙을 통한 미적분의 전자공학 응용2025.11.151. 미분계수와 도함수 미분계수는 함수 f(x)의 극한값으로 정의되며, 특정 x값에서의 순간 변화율과 접선의 기울기를 나타냅니다. 미분가능한 함수는 연속함수이고, 미분계수를 나열한 함수를 도함수라고 합니다. 함수가 연속이어도 도함수는 연속이 아닐 수 있습니다. 2. 정적분과 넓이 계산 부정적분 g(x)는 도함수가 f(x)인 함수입니다. 닫힌구간 [a,b]에서 연속인 함수의 정적분은 g(b)-g(a)로 계산되며, 함수와 x축 사이의 넓이는 ∫|f(x)|dx로 구합니다. 극한을 이용한 리만 합으로도 넓이를 계산할 수 있습니다. 3. 미...2025.11.15
-
공기저항을 고려한 자유낙하 물체의 미분방정식과 일반해2025.11.161. 자유낙하 물체의 미분방정식 수립 질량 m인 물체가 중력가속도 g로 정지상태에서 자유낙하할 때, 물체에 작용하는 힘은 중력 F_g = mg와 속도에 비례하는 공기저항 F_r = -kv입니다. 뉴턴의 제2법칙 F = ma를 적용하면, 물체의 운동방정식은 m(dv/dt) = mg - kv로 표현됩니다. 이를 정리하면 dv/dt = g - (k/m)v 형태의 1계 선형 상미분방정식이 됩니다. 이 방정식은 중력과 공기저항의 균형을 나타내며, 물체의 속도 변화를 시간에 따라 기술합니다. 2. 선형 상미분방정식의 일반해 구하기 dv/dt ...2025.11.16
-
제어시스템 분석과 MATLAB SIMULINK 활용2025.11.161. 부분인수분해 및 라플라스 변환 전달함수의 분자와 분모 계수를 이용하여 residue 명령어로 부분인수분해를 수행하고, 극점과 잔여값을 구한다. 이를 통해 역라플라스 변환으로 시간영역의 출력 y(t)를 구할 수 있다. MATLAB의 step 함수를 사용하여 스텝 입력에 대한 시스템 응답을 시뮬레이션하고 그래프로 표현하여 이론값과 비교 검증한다. 2. 극점과 영점 분석 전달함수의 극점(pole)과 영점(zero)을 roots 함수로 구하고 pzmap 함수로 극점-영점 맵에 표기한다. 극점은 시스템의 안정성을 결정하며, 영점은 시스...2025.11.16
-
입계점의 미분방정식: 고유값, 고유벡터, 일반해2025.11.171. 비고유점(Improper Node) 미분방정식 y1 = -3y1 + y2, y2 = y1 - 3y2에서 고유값 λ1 = 2, λ2 = 2를 가지며, 고유벡터는 v1 = [1, -1], v2 = [3, 1]입니다. 일반해는 y1 = c1e^(2t) + c2te^(2t), y2 = c1e^(2t) - c2te^(2t)로 표현되며, 중복된 고유값으로 인해 지수함수와 선형항이 포함된 형태입니다. 2. 고유점(Proper Node) 미분방정식 y1 = y1, y2 = -y2에서 고유값 λ1 = 1, λ2 = -1을 가지며, 고유벡터는 ...2025.11.17
-
파이썬으로 미분방정식 수치해 구하기 (odeint)2025.11.171. 미분방정식의 수치해 공학계산에서 일반해를 구하기 어려운 미분방정식을 scipy 라이브러리의 odeint 명령어를 이용하여 수치해를 구하는 방법을 설명합니다. 복잡한 연립 미분방정식의 경우 함수를 시간 변수에 관한 식으로 표현하기 어려우므로, 각 시간값에 따른 함수값을 직접 계산하여 수치적 근사값을 도출하는 접근 방식을 사용합니다. 2. odeint를 이용한 연립 미분방정식 풀이 scipy.integrate의 odeint 함수를 사용하여 3개 이상의 연립 미분방정식을 동시에 풀 수 있습니다. 미분방정식을 def/return 구문...2025.11.17
-
파이썬을 이용한 공학계산의 미분방정식 적용예2025.11.171. 자유낙하 운동과 2차 미분방정식 특정 높이에서 돌을 떨어뜨리는 상황에서 가속도는 y'' = d²y/dx² = g 형태의 2차 미분방정식으로 표현됩니다. 이를 적분하면 속도 y' = g*x + v0, 거리 y = 1/2*g*x²을 얻습니다. 초기조건 y0=0, v0=0을 적용하면 y = 1/2*g*x²이 되며, 파이썬을 통해 그래프로 표현하면 직관적으로 시간에 따른 낙하거리를 파악할 수 있습니다. 2. 인구증가 모델과 1차 미분방정식 인구증가 속도 y' = k*y 형태의 1차 미분방정식으로 모델링됩니다. 미국 인구 데이터(180...2025.11.17
-
파이썬으로 미분방정식의 일반해 구하기2025.11.171. 미분방정식의 일반해 화학반응에서 반응속도식 -rA = -dCA/dt = k × CA 형태의 미분방정식을 풀어 일반해를 구하는 방법을 다룬다. sympy 라이브러리의 dsolve 명령어를 사용하여 복잡한 수기 계산 없이 파이썬으로 미분방정식을 해결할 수 있다. 초기조건 CA(0) = CA0를 적용하여 적분상수를 결정하고, 최종적으로 CA(t) = CA0 × exp(-k×t) 형태의 해를 얻는다. 2. 화학반응속도론 A → B로의 비가역반응에서 반응속도식은 -rA = k × CA 형태이며, 이를 농도의 시간변화로 표현하면 -dCA...2025.11.17