
총 76개
-
ChatGPT 설명 및 이용 가이드2025.05.071. ChatGPT ChatGPT는 최근 인공지능 분야에서 주목받는 대화 모델의 일종입니다. 이 모델은 OpenAI에서 개발한 GPT(Generative Pre-trained Transformer) 모델의 일부로, 자연어 처리 기술과 딥러닝 알고리즘을 활용하여 인간과 대화하는 역할을 수행합니다. ChatGPT는 챗봇, 인공지능 비서, 상담원 등 다양한 분야에서 활용됩니다. 2. Transformer ChatGPT(Generative Pre-trained Transformer)은 딥러닝 기술 중 하나인 Transformer 구조를 기...2025.05.07
-
생성시스템에 대해 설명하시오2025.05.111. 생성시스템 생성시스템은 컴퓨터 프로그램이나 하드웨어를 사용하여 새로운 콘텐츠를 자동으로 생성하는 시스템을 말합니다. 이러한 시스템은 인공지능, 기계학습, 자연어처리 등의 기술을 활용하여 다양한 종류의 콘텐츠를 생성할 수 있습니다. 생성시스템은 예술, 문학, 음악, 게임, 디자인 등 다양한 분야에서 활용될 수 있으며, 콘텐츠의 품질과 다양성을 향상시킬 수 있습니다. 2. 생성시스템의 작동 방식 생성시스템은 다양한 방식으로 작동할 수 있습니다. 예를 들어, 자연어처리 기술을 사용하여 텍스트를 생성하는 시스템은 주어진 데이터를 분석...2025.05.11
-
딥러닝의 최신 동향: ChatGPT, Gemini, Lamma, Claude, Hyper Clovax 등2025.01.171. Gemini Gemini는 구글의 AI 연구팀이 개발한 차세대 언어 모델로, 인간 수준의 이해력과 자연스러운 대화를 목표로 하고 있습니다. Gemini는 다중 언어 지원, 컨텍스트 이해, 확장성 등의 특징을 가지고 있으며, 구글 검색 엔진, 음성 비서, 번역 서비스 등 다양한 애플리케이션에 적용되고 있습니다. 2. Lamma Lamma는 Meta(구 Facebook)의 AI 연구팀이 개발한 새로운 딥러닝 모델로, 텍스트 생성, 이미지 인식, 음성 인식 등 다양한 분야에서 활용될 수 있습니다. Lamma는 대규모 사전 학습, 적...2025.01.17
-
한국방송통신대학교 언어의 이해 중간과제물2025.01.241. 컴퓨터 언어학 컴퓨터 언어학은 컴퓨터가 인간의 언어를 처리할 수 있도록 하는 방법을 연구하는 분야로, 1950년 미국에서 러시아어 자동 번역 시도로부터 시작되었다. 컴퓨터 언어학은 인간의 언어 지식을 활용하여 유용한 컴퓨터 시스템을 개발하는 것을 목적으로 하며, 최근 언어 연구에도 컴퓨터가 활용되고 있다. 주요 연구 분야로는 맞춤법 검사, 문법 검사, 음성 합성 및 인식, 기계 번역, 형태소 분석 등이 있다. 2. 맞춤법 검사 컴퓨터 언어학에서는 단어의 형태론적 구조를 분석하여 맞춤법 검사와 교정을 수행한다. 이를 위해서는 컴...2025.01.24
-
효율적인 텍스트 분류를 위한 fastText 모델2025.01.261. 텍스트 분류 이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룹니다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적합니다. 이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었습니다. 2. 데이터 세트 이 논문에서는 텍스트 분류 작업에 잘...2025.01.26
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 딥러닝과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 사람처럼 언어를 이해하고 생성할 수 있는 능력을 갖춘 모델입니다. 이는 자연어 처리(NLP) 기술의 발전을 기반으로 하며, 딥러닝 기술을 활용해 언어의 문법적 구조와 단어 간 의미적 관계를 학습합니다. LLM은 챗봇, 자동 번역, 텍스트 요약 등 다양한 분야에서 활용되고 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트뿐만 아니라 이미지, 소리, 동영상 등 다양한 데이터를 통합적으로 처리할 수 있는 인공지능 ...2025.01.26
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.261. LLM(대규모 언어 모형) LLM은 자연어 처리(NLP) 분야에서 필수적인 역할을 하는 인공지능 시스템입니다. LLM은 인간의 언어 이해 및 해석 방식을 모방하여, GPT-4나 BERT와 같은 대표적인 AI 모델을 만들어냈습니다. 이러한 모델들은 문장 생성, 번역, 요약 등에서 강력한 성능을 발휘하며, 마치 언어 전문가가 문법과 의미를 분석하는 것과 유사한 방식으로 작동합니다. 2. LMM(대규모 멀티모달 모형) LMM은 언어뿐만 아니라 이미지, 소리, 영상 등 다양한 형태의 데이터를 동시에 처리할 수 있는 인공지능입니다. 이...2025.01.26
-
고려대학교 객체지향프로그래밍 A+ 기말고사 치팅시트2025.05.101. 프로그래밍 언어 프로그래밍 언어는 컴퓨터가 수행할 수 있는 모든 것을 설명할 수 있어야 하며, 프로그래머가 의도한 바를 정확히 표현할 수 있어야 합니다. 튜링 기계는 무한한 테이프, 읽기/쓰기/삭제 장치, 상태 테이블을 가지고 있으며 튜링 완전하거나 튜링 동등합니다. 실제 컴퓨터는 선형 한정 레지스터 기계(거의 만족)입니다. 대부분의 언어가 튜링 완전하기 때문에 문제가 되지 않습니다. 프로그래밍 언어는 오류 방지, 사용성 등의 기준을 만족해야 합니다. 2. 프로그래밍 패러다임 프로그래밍 패러다임은 좋은 프로그래밍 언어의 기준을...2025.05.10
-
언어 평가의 5가지 요건과 문제점2025.05.111. 언어 평가의 5가지 요건 언어 평가는 타당도, 실용도, 신뢰도, 진정성, 효과 등 5가지 요건을 충족해야 한다. 타당도는 정확성, 실용도는 일반성, 신뢰도는 일관성, 진정성은 투명성, 효과는 유용성을 의미한다. 이러한 요건이 충족되지 않으면 평가의 신뢰성과 품질이 저하되며, 응용 프로그램에서 예상되는 성과를 달성하기 어려워진다. 2. 언어 평가 요건 미충족 시 문제점 정확성 미충족 시 잘못된 결과 출력, 신뢰성 저하, 응용 프로그램 성능 저하 등의 문제가 발생할 수 있다. 일반성 부족 시 특정 주제/도메인에만 유효하고 새로운 ...2025.05.11
-
ChatGPT 배경과 활용2025.05.051. ChatGPT 개요 ChatGPT는 OpenAI에서 개발한 대화형 인공지능 언어 모델입니다. 이 모델은 GPT-3.5 아키텍처를 기반으로 하며, 2021년 이전에 배운 대규모 데이터셋을 사용하여 학습되었습니다. 이 모델은 13억 개의 매개 변수를 가지며, 이는 GPT-3 모델에서 사용된 매개 변수의 약 116배에 해당합니다. 2. ChatGPT의 활용 ChatGPT는 인공지능 연구자들이 대화형 인공지능을 개발하는 데 필요한 자원을 제공합니다. 또한, ChatGPT는 챗봇, 자동 응답 시스템, 자동 번역 시스템 등 다양한 응용 ...2025.05.05