
총 23개
-
난류 채널 유동 내 역류 현상에 대한 횡방향 도메인 크기 영향2024.12.311. 난류 채널 유동 논문에서는 난류 채널 유동 내에서 발생하는 역류 현상에 대해 연구했습니다. 직접수치모사 기법을 사용하여 횡방향 도메인 크기가 역류 영역의 크기에 미치는 영향을 분석했습니다. 연구 결과, 횡방향 도메인 크기가 증가할수록 유동 방향과 횡방향으로 더 큰 역류 영역이 발생하는 것을 확인했습니다. 이를 통해 난류 채널 유동의 라지 스케일 유동 구조 해상도가 역류 현상에 영향을 미친다는 사실을 밝혀냈습니다. 2. 직접수치모사 기법 논문에서는 직접수치모사 기법을 사용하여 난류 채널 유동 내 역류 현상을 분석했습니다. 직접수...2024.12.31
-
한양대학교 수치해석 matlab 과제, LU분해법, TDMA, SUR2025.04.261. 수치해석 이 프레젠테이션은 수치해석 3장 과제에 대한 MATLAB 기반 풀이 및 실행 결과를 다루고 있습니다. 주요 내용은 LU 분해법, TDMA, SOR(Successive Over-Relaxation) 방법을 사용하여 문제 1, 2, 3을 해결하는 것입니다. 특히 SOR 방법에서 최적의 오메가(ω) 값을 찾는 과정이 자세히 설명되어 있습니다. 반복 실험을 통해 problem 1은 ω = 0.92~1.05, problem 2는 ω = 1.06~1.08 사이의 값이 가장 적은 반복 횟수로 수렴함을 확인하였습니다. 2. MATL...2025.04.26
-
자연대류 현상 관찰 및 분석2025.01.291. 자연대류 자연대류는 유체의 온도 차이로 인해 발생하는 유체 운동을 말한다. 온도가 높은 벽면에서 유체가 가벼워져 상승하고, 차가운 벽면에서 유체가 무거워져 하강하는 순환 운동이 발생한다. 이러한 자연대류 현상을 계산 영역 내에서 관찰하고 분석하였다. 2. 레일리 수 레일리 수는 유체 사이의 열 전달과 관련된 무차원 수로, 임계값보다 작으면 열이 전도 형태로 전달되고 임계값보다 크면 대류 형태로 전달된다. 본 실험에서는 레일리 수 16,219와 50,000에 대해 분석하였으며, 50,000에서는 불규칙한 난류 형태가 관찰되었다....2025.01.29
-
전산구조해석 과제 82025.04.251. FEM FEM(유한요소법)은 복잡한 구조물의 응력, 변형 등을 해석하는 수치해석 기법입니다. 이 과제에서는 FEM을 이용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 2. 구조해석 이 과제는 구조물의 전산 구조해석 과정을 다루고 있습니다. 유한요소법을 활용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 3. 강성 행렬 구조물의 강성 행렬은 구조물의 강성을 나타내는 행렬로, 이를 통해 하중에 따른 변형을 계산할 수 있습니다. 이 과제에서는...2025.04.25
-
[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)2025.04.261. 오리피스 유량계 오리피스 유량계의 유량계수(C)는 실험식 C=0.6+0.032γ^2.1-0.19γ^8+91.8γ^2.4/Re^0.75를 만족한다. 여기서 γ는 교축비(관의 지름과 오리피스 지름의 비)이고, Re는 레이놀즈 수이다. 유량계수 C=0.6이고, 레이놀즈 수가 Re=10^5일 때 초기구간 0.2<γ<0.9에서 방정식을 만족하는 교축비(γ)를 이분법을 사용하여 유효숫자 4자리까지 정확히 구하였다. 2. 뉴턴법 다음 방정식 4x^3-e^(0.5x^2)-1=0에 대하여 가장 작은 양의 근을 구하기 위해 초기값을 0.3으로 ...2025.04.26
-
고급수학_생명공학 분야에서 행렬의 이용2025.05.051. 좌표계의 종류 발표에서는 생명과학 분야에서 사용되는 대표적인 좌표계인 직각 좌표계, 원통 좌표계, 구면 좌표계에 대해 설명하고 있습니다. 각 좌표계의 특징과 장점이 소개되어 있습니다. 2. MATLAB MATLAB은 수치해석 환경과 프로그래밍 기능을 제공하는 공학용 소프트웨어입니다. 행렬 기반의 논리 구현, 데이터 시각화, 알고리즘 구현 등의 기능을 제공하며 수치해석에 특화되어 있습니다. MATLAB의 연산 언어 특성과 주요 활용 분야도 소개되어 있습니다. 3. MATLAB 활용 사례 발표에서는 MATLAB을 활용한 3가지 사...2025.05.05
-
매트랩(Matlab)활용한 이공계열 학습의 활용 방안에 대한 고찰 - 실제 학습 예제들을 중심으로- (version cire)2025.04.261. 다변수 함수 그래프 시각화 이 코드는 다변수 함수의 그래프를 시각화하는 방법을 보여줍니다. 먼저 x 벡터를 만들고, y를 x와 1대1 대응되도록 만듭니다. 그 다음 meshgrid() 함수를 사용하여 정의역을 만들고, 다변수 함수 식을 코딩에 맞게 변환한 후 surf() 함수를 사용하여 그래프를 그립니다. 2. 다항식의 최적함수피팅, 최대값, 최솟값 찾기 이 코드는 특정한 유한개의 점들로 n-1차 다항식을 만들고, 그 곡선의 최대값과 최소값을 찾는 방법을 보여줍니다. 최소자승법과 polyfit(), polyval(), poly...2025.04.26
-
인천대학교 수치해석 MatLab2025.04.251. Cubic spline interpolation을 이용한 삼성전자 주가 예측 3차 spline 보간법을 적용하여 삼성전자 주가 데이터와 보간선 그래프를 그렸습니다. 최초 날짜인 4월 21일을 0으로 두고 하루가 지날 때마다 x축에서 1씩 증가하도록 설정했습니다. 최종 날짜인 7월 6일은 최초 날짜를 기준으로 76일이 지났기 때문에 x축의 범위는 0부터 76이 됩니다. 구하고자 하는 날은 4월 21일 기준으로 13일이 지났기 때문에 x=13의 값이 예측값이 됩니다. 예측값은 2,244,435원으로 실제값인 2,276,000원과의...2025.04.25
-
한양대 수치해석 과제 2장 뉴턴랩슨법, 시컨트법 비교 매트랩2025.04.261. Newton-Raphson 방법 과제 (a)에서 Newton-Raphson 방법을 사용하여 초기 추정값 x0 = 0.3에서 시작하여 3.0844의 가장 작은 양의 근을 찾을 수 있었습니다. 이 방법은 주어진 함수의 미분 형태를 구해야 한다는 단점이 있지만, 반복 횟수가 Secant 방법보다 적었습니다. 2. Secant 방법 과제 (b)에서 Secant 방법을 사용하여 초기 추정값 x1 = 0.3, x2 = 0.4에서 시작하여 0.8471의 가장 작은 양의 근을 찾을 수 있었습니다. Secant 방법은 미분 형태를 구할 필요가...2025.04.26
-
한양대학교 수치해석 matlab 과제2025.04.261. 수치해석 이 과제는 수치해석 4장에 대한 과제로, MATLAB을 이용하여 문제를 해결하였다. 첫 번째 문제에서는 주어진 수식을 변형하여 1차식으로 만들고, 여러 시행착오 끝에 a 값에 4를 곱해주어 주어진 데이터에 더 근사한 그래프를 얻을 수 있었다. 두 번째 문제에서는 여러 형태의 함수가 합쳐진 복잡한 함수를 이용하여 그래프를 구하였고, 결정계수가 1에 가까운 비교적 정확한 그래프를 얻을 수 있었다. 전반적으로 복잡한 함수를 이용하는 것이 단일 함수를 이용하는 것보다 오차가 적고 결정계수가 1에 가까운 것을 확인할 수 있었다...2025.04.26