
총 23개
-
전산구조해석 과제 82025.04.251. FEM FEM(유한요소법)은 복잡한 구조물의 응력, 변형 등을 해석하는 수치해석 기법입니다. 이 과제에서는 FEM을 이용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 2. 구조해석 이 과제는 구조물의 전산 구조해석 과정을 다루고 있습니다. 유한요소법을 활용하여 구조물의 강성 행렬을 계산하고, 하중에 따른 변형을 분석하는 내용이 포함되어 있습니다. 3. 강성 행렬 구조물의 강성 행렬은 구조물의 강성을 나타내는 행렬로, 이를 통해 하중에 따른 변형을 계산할 수 있습니다. 이 과제에서는...2025.04.25
-
매트랩(Matlab)활용한 이공계열 학습의 활용 방안에 대한 고찰 - 실제 학습 예제들을 중심으로- (version cire)2025.04.261. 다변수 함수 그래프 시각화 이 코드는 다변수 함수의 그래프를 시각화하는 방법을 보여줍니다. 먼저 x 벡터를 만들고, y를 x와 1대1 대응되도록 만듭니다. 그 다음 meshgrid() 함수를 사용하여 정의역을 만들고, 다변수 함수 식을 코딩에 맞게 변환한 후 surf() 함수를 사용하여 그래프를 그립니다. 2. 다항식의 최적함수피팅, 최대값, 최솟값 찾기 이 코드는 특정한 유한개의 점들로 n-1차 다항식을 만들고, 그 곡선의 최대값과 최소값을 찾는 방법을 보여줍니다. 최소자승법과 polyfit(), polyval(), poly...2025.04.26
-
한양대 수치해석 과제 2장 뉴턴랩슨법, 시컨트법 비교 매트랩2025.04.261. Newton-Raphson 방법 과제 (a)에서 Newton-Raphson 방법을 사용하여 초기 추정값 x0 = 0.3에서 시작하여 3.0844의 가장 작은 양의 근을 찾을 수 있었습니다. 이 방법은 주어진 함수의 미분 형태를 구해야 한다는 단점이 있지만, 반복 횟수가 Secant 방법보다 적었습니다. 2. Secant 방법 과제 (b)에서 Secant 방법을 사용하여 초기 추정값 x1 = 0.3, x2 = 0.4에서 시작하여 0.8471의 가장 작은 양의 근을 찾을 수 있었습니다. Secant 방법은 미분 형태를 구할 필요가...2025.04.26
-
한양대학교 수치해석 matlab 과제, LU분해법, TDMA, SUR2025.04.261. 수치해석 이 프레젠테이션은 수치해석 3장 과제에 대한 MATLAB 기반 풀이 및 실행 결과를 다루고 있습니다. 주요 내용은 LU 분해법, TDMA, SOR(Successive Over-Relaxation) 방법을 사용하여 문제 1, 2, 3을 해결하는 것입니다. 특히 SOR 방법에서 최적의 오메가(ω) 값을 찾는 과정이 자세히 설명되어 있습니다. 반복 실험을 통해 problem 1은 ω = 0.92~1.05, problem 2는 ω = 1.06~1.08 사이의 값이 가장 적은 반복 횟수로 수렴함을 확인하였습니다. 2. MATL...2025.04.26
-
수치해석을 AI로 해보자 (파이썬 예제코드 포함)2025.01.191. 수치해석 수치해석은 복잡한 수학적 문제를 컴퓨터를 사용하여 근사적으로 해결하는 방법을 의미합니다. 이는 이론적으로는 해를 구할 수 있지만, 실제로는 계산이 어려운 문제들을 다루기 위해 발전된 분야입니다. 수치해석은 물리학, 공학, 금융 등 다양한 분야에서 널리 사용되며, 복잡한 방정식과 모델을 해결하는데 중요한 역할을 합니다. 2. AI와 수치해석의 차이점 AI는 이미지 인식, 자연어 처리, 음성 인식 등 다양한 분야에서 놀라운 성과를 이루어냈습니다. 이러한 성과는 AI가 복잡한 패턴을 인식하고 학습하는 능력 덕분입니다. 그러...2025.01.19
-
(A0) 서울대 항공우주공학과 압축성유체역학 HW/중간대체과제/텀프 모음2025.01.181. 압축성 유체 역학 이 과제는 압축성 유체 역학 분야에 대한 내용을 다루고 있습니다. 압축성 유체 역학은 유체의 밀도 변화가 유동에 미치는 영향을 연구하는 학문 분야입니다. 이 과제에서는 쐐기와 원뿔 형상에 대한 무점성 유동 해석, 고체 벽면에서의 충격파 반사 현상 등을 다루고 있습니다. 이를 통해 압축성 유체 역학의 기본 개념과 수치 해석 기법을 이해할 수 있습니다. 1. 압축성 유체 역학 압축성 유체 역학은 유체의 밀도 변화가 유동 특성에 중요한 영향을 미치는 분야입니다. 이 분야는 항공, 우주, 자동차 등 다양한 산업 분야...2025.01.18
-
공업수학의 차원(dimension) 도구 중 극좌표의 효과적 활용2025.01.201. 극좌표 개념과 응용 극좌표는 좌표 평면에서 한 점의 위치를 나타내기 위해 각도와 반지름을 사용하는 좌표계입니다. 이는 일반적인 직교 좌표계와 달리, 중심점(원점)에서 특정 각도와 거리로 한 점을 표현합니다. 극좌표계는 특히 원형 또는 방사형 대칭을 가지는 문제에서 유용하게 적용되며, 물리학, 기계공학, 전기공학 등 다양한 공학 분야에서 활용됩니다. 2. 극좌표의 장점 분석 극좌표는 방사형 대칭성을 가진 문제에 대한 접근성을 높여주며, 특정 물리적 현상을 모델링하는 부분에 있어 직교 좌표계보다 효율적입니다. 또한 극좌표는 다양한...2025.01.20
-
조정다각형과 재귀식을 활용한 Bezier 곡선 교점 구하기2025.01.291. Bezier 곡선 Bezier 곡선은 컴퓨터 그래픽스 분야에서 널리 사용되는 곡선 표현 방식입니다. 이 문제에서는 두 Bezier 곡선의 교점을 구하는 방법을 설명합니다. 조정다각형이 겹치면 Bezier 곡선을 반으로 나누고 나눈 곡선들의 조정다각형을 비교하여 교점을 찾습니다. 재귀함수를 사용해서 조정다각형의 크기가 매우 작을 때까지 루프를 반복합니다. 2. 조정다각형 조정다각형은 Bezier 곡선을 정의하는 데 사용되는 다각형입니다. 이 문제에서는 두 Bezier 곡선의 조정다각형을 비교하여 교점을 찾는 방법을 설명합니다. ...2025.01.29
-
한양대학교 수치해석 matlab 과제2025.04.261. 수치해석 이 과제는 수치해석 4장에 대한 과제로, MATLAB을 이용하여 문제를 해결하였다. 첫 번째 문제에서는 주어진 수식을 변형하여 1차식으로 만들고, 여러 시행착오 끝에 a 값에 4를 곱해주어 주어진 데이터에 더 근사한 그래프를 얻을 수 있었다. 두 번째 문제에서는 여러 형태의 함수가 합쳐진 복잡한 함수를 이용하여 그래프를 구하였고, 결정계수가 1에 가까운 비교적 정확한 그래프를 얻을 수 있었다. 전반적으로 복잡한 함수를 이용하는 것이 단일 함수를 이용하는 것보다 오차가 적고 결정계수가 1에 가까운 것을 확인할 수 있었다...2025.04.26
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10