
총 23개
-
몬테카를로 시뮬레이션으로 원의 면적 구하기 (파이썬코드예제 포함)2025.05.091. 몬테카를로 시뮬레이션 몬테카를로 추정(Monte Carlo estimation)은 통계학과 컴퓨터 과학 등 다양한 분야에서 널리 사용되는 추정 방법 중 하나입니다. 이 방법은 통계적인 시뮬레이션을 통해 확률적인 모델링을 수행하여 원하는 값을 추정하는 방식으로 작동합니다. 몬테카를로 추정은 랜덤 샘플링과 통계적 분석을 결합하여 정확한 결과를 얻기 어려운 문제를 해결하는 데 유용하게 사용됩니다. 2. 원의 면적 구하기 원의 면적을 구하기 위해서는 원 안에 몬테카를로 시뮬레이션으로 생성된 점들 중 원 안에 속하는 점들의 비율을 계산...2025.05.09
-
한양대학교 수치해석 matlab 과제2025.04.261. 수치해석 이 과제는 수치해석 4장에 대한 과제로, MATLAB을 이용하여 문제를 해결하였다. 첫 번째 문제에서는 주어진 수식을 변형하여 1차식으로 만들고, 여러 시행착오 끝에 a 값에 4를 곱해주어 주어진 데이터에 더 근사한 그래프를 얻을 수 있었다. 두 번째 문제에서는 여러 형태의 함수가 합쳐진 복잡한 함수를 이용하여 그래프를 구하였고, 결정계수가 1에 가까운 비교적 정확한 그래프를 얻을 수 있었다. 전반적으로 복잡한 함수를 이용하는 것이 단일 함수를 이용하는 것보다 오차가 적고 결정계수가 1에 가까운 것을 확인할 수 있었다...2025.04.26
-
위성 6자유도 시뮬레이션 모델링2025.04.271. 6자유도 시뮬레이션 6자유도 시뮬레이션은 비선형 거동을 보이는 비행체의 회전과 병진 운동을 해석하기 위하여 수행된다. 위성도 궤도 운동과 동시에 임무 수행을 위해 자세 운동을 하기 때문에 6자유도 시뮬레이션을 통해 위성의 거동을 해석할 수 있다. 6자유도 시뮬레이션은 유도항법제어, 동역학, 외력, 환경 부분으로 나뉘어져 각각의 블록에서 계산된 값을 이용하여 결과를 산출한다. 2. 좌표계 및 궤도 파라미터 위성의 경우 지구 주위를 주기적으로 회전하는 물체이기 때문에 다양한 좌표계를 사용하여 위성의 위치 및 자세 등을 표현하게 된...2025.04.27
-
[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)2025.04.261. 오리피스 유량계 오리피스 유량계의 유량계수(C)는 실험식 C=0.6+0.032γ^2.1-0.19γ^8+91.8γ^2.4/Re^0.75를 만족한다. 여기서 γ는 교축비(관의 지름과 오리피스 지름의 비)이고, Re는 레이놀즈 수이다. 유량계수 C=0.6이고, 레이놀즈 수가 Re=10^5일 때 초기구간 0.2<γ<0.9에서 방정식을 만족하는 교축비(γ)를 이분법을 사용하여 유효숫자 4자리까지 정확히 구하였다. 2. 뉴턴법 다음 방정식 4x^3-e^(0.5x^2)-1=0에 대하여 가장 작은 양의 근을 구하기 위해 초기값을 0.3으로 ...2025.04.26
-
파이썬으로 수행하는 공정시뮬레이션 기법 I2025.01.031. 공정 시뮬레이션 공정 시뮬레이션은 실험 결과를 수식화하여 일반화하거나, 다양한 변수의 영향을 관찰하여 최적의 조건을 찾는 데 사용됩니다. 상용 패키지 프로그램은 복잡한 식을 동시에 풀어낼 수 있지만, 특정 현상에 제한적일 수 있습니다. 따라서 개인이 직접 시뮬레이션 프로그램을 개발하는 것이 중요합니다. 이를 위해서는 다양한 물리화학적 현상을 동시에 고려할 수 있는 능력이 필요합니다. 2. 파이썬을 이용한 시뮬레이션 파이썬을 이용하여 시뮬레이션을 수행할 때, 변수 설정과 결과값 비교가 중요합니다. 수치적 변수와 반응경로와 같은 ...2025.01.03
-
한양대학교 수치해석 matlab 과제, LU분해법, TDMA, SUR2025.04.261. 수치해석 이 프레젠테이션은 수치해석 3장 과제에 대한 MATLAB 기반 풀이 및 실행 결과를 다루고 있습니다. 주요 내용은 LU 분해법, TDMA, SOR(Successive Over-Relaxation) 방법을 사용하여 문제 1, 2, 3을 해결하는 것입니다. 특히 SOR 방법에서 최적의 오메가(ω) 값을 찾는 과정이 자세히 설명되어 있습니다. 반복 실험을 통해 problem 1은 ω = 0.92~1.05, problem 2는 ω = 1.06~1.08 사이의 값이 가장 적은 반복 횟수로 수렴함을 확인하였습니다. 2. MATL...2025.04.26
-
공업수학의 차원(dimension) 도구 중 극좌표의 효과적 활용2025.01.201. 극좌표 개념과 응용 극좌표는 좌표 평면에서 한 점의 위치를 나타내기 위해 각도와 반지름을 사용하는 좌표계입니다. 이는 일반적인 직교 좌표계와 달리, 중심점(원점)에서 특정 각도와 거리로 한 점을 표현합니다. 극좌표계는 특히 원형 또는 방사형 대칭을 가지는 문제에서 유용하게 적용되며, 물리학, 기계공학, 전기공학 등 다양한 공학 분야에서 활용됩니다. 2. 극좌표의 장점 분석 극좌표는 방사형 대칭성을 가진 문제에 대한 접근성을 높여주며, 특정 물리적 현상을 모델링하는 부분에 있어 직교 좌표계보다 효율적입니다. 또한 극좌표는 다양한...2025.01.20
-
난류 채널 유동 내 역류 현상에 대한 횡방향 도메인 크기 영향2024.12.311. 난류 채널 유동 논문에서는 난류 채널 유동 내에서 발생하는 역류 현상에 대해 연구했습니다. 직접수치모사 기법을 사용하여 횡방향 도메인 크기가 역류 영역의 크기에 미치는 영향을 분석했습니다. 연구 결과, 횡방향 도메인 크기가 증가할수록 유동 방향과 횡방향으로 더 큰 역류 영역이 발생하는 것을 확인했습니다. 이를 통해 난류 채널 유동의 라지 스케일 유동 구조 해상도가 역류 현상에 영향을 미친다는 사실을 밝혀냈습니다. 2. 직접수치모사 기법 논문에서는 직접수치모사 기법을 사용하여 난류 채널 유동 내 역류 현상을 분석했습니다. 직접수...2024.12.31
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
AI가 이처럼 발달했는데 왜 이렇게 일기예보는 틀릴까?2025.01.181. 기상 예보의 정확성 향상 현대 과학 기술의 발전에도 불구하고 일기예보가 여전히 틀리는 이유는 기상 시스템의 복잡성과 예측의 불확실성 때문이다. 최근 구글 딥마인드의 AI 모델 GraphCast가 이러한 문제를 해결할 수 있다고 알려졌지만, 실제로는 AI와 전통적인 수치해석 방법의 장단점을 이해하고 이를 결합하는 것이 중요하다. AI는 빠르고 효율적인 데이터 처리와 높은 정확도를 보이지만, 학습되지 않은 상황에서는 성능이 저하될 수 있다. 반면 수치해석 방법은 물리 법칙에 기반하여 신뢰성 있는 결과를 제공할 수 있지만, 많은 계...2025.01.18