
총 87개
-
데이터베이스 관리 시스템은 많은 장점도 있지만 단점도 있다2025.01.241. 데이터베이스 백업과 회복의 복잡성 데이터베이스의 백업과 회복 절차가 복잡한 이유는 데이터베이스 자체의 본질적인 복잡성에서 시작된다. 현대 데이터베이스는 방대한 양의 데이터를 담고 있고, 각종 필드와 세부 구성이 매우 정밀하게 얽혀 있다. 또한 데이터베이스 환경에서는 이중화와 복제 기술을 통해 데이터를 보호하려는 시도가 이어지고 있는데, 이는 역설적으로 시스템 장애 시 회복 절차를 훨씬 복잡하게 만든다. 결국 데이터베이스 구조가 복잡할수록 백업과 회복 절차 또한 더 어렵고 정교하게 설계되지 않으면 안 된다. 2. 백업 및 회복 ...2025.01.24
-
비즈니스 애널리틱스의 정의와 관련 용어 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics, BA)는 데이터를 분석하여 기업이 비즈니스 의사결정을 내리는 데 필요한 인사이트를 제공하는 과정이다. 비즈니스 애널리틱스의 역사는 기업이 데이터의 활용을 통해 의사결정을 최적화하려는 노력에서 시작되었다. 비즈니스 애널리틱스는 기술적 분석, 예측적 분석, 처방적 분석 등 세 가지 유형으로 나뉜다. 2. 데이터 과학 데이터 과학은 정형 및 비정형 데이터를 분석해 유용한 정보를 추출하는 과정으로, 데이터 수집 및 관리, 데이터 분석, 결과 시각화 및 커뮤니케...2025.01.26
-
[글로벌 비즈니스 애널리틱스] 비즈니스 애널리틱스의 역사와 정의, 관련 용어 설명2025.01.261. 비즈니스 애널리틱스의 역사 비즈니스 애널리틱스는 20세기 후반부터 본격적으로 발전하기 시작했다. 1960년대와 70년대에는 데이터 처리 기술의 발전이 주로 통계적 분석과 의사결정 지원 시스템(DSS)에 중점을 두고 있었다. 1990년대에는 데이터베이스 관리 시스템(DBMS)과 데이터 마이닝 기법이 등장하면서 보다 복잡한 데이터 분석이 가능해졌다. 2000년대 들어서는 빅데이터와 클라우드 컴퓨팅의 등장으로 인해 데이터 수집과 저장, 분석이 용이해지면서 비즈니스 애널리틱스가 더욱 발전하였다. 2. 비즈니스 애널리틱스의 정의 비즈니...2025.01.26
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.181. 데이터베이스와 인공지능의 상호작용 데이터베이스와 인공지능은 밀접한 관계를 가지고 있습니다. 인공지능 알고리즘은 대량의 데이터를 필요로 하며, 데이터베이스 시스템은 이러한 데이터를 효율적으로 관리하고 활용할 수 있게 해줍니다. 데이터베이스는 실시간 처리와 대용량 데이터 활용을 위해 진화하고 있으며, 이를 통해 인공지능 기술의 발전을 지원하고 있습니다. 이러한 상호작용은 다양한 분야에서 혁신과 가치를 창출하고 있습니다. 2. 데이터 구조화와 데이터베이스의 역할 데이터의 구조화는 인공지능 기술의 효율성과 정확성을 높이는 데 중요한 ...2025.01.18
-
슈퍼 마리오 - 인공지능은 어떻게 게임을 할까?2025.05.081. 데이터 기반 학습 인공지능은 슈퍼 마리오 게임 플레이 데이터를 사용하여 게임의 규칙과 패턴을 학습합니다. 이를 통해 어떤 상황에서 점프를 해야 하는지, 어떤 적과의 접촉을 피해야 하는지 등을 학습하게 됩니다. 2. 강화 학습 인공지능은 게임 플레이를 통해 보상과 벌점을 받고, 이를 통해 자동으로 학습하게 됩니다. 예를 들어 도착 지점에 도달하면 보상을 받고, 적에게 맞으면 벌점을 받는 식으로 학습하면서 게임을 플레이합니다. 3. 신경망과 패턴 인식 인공지능은 신경망 모델을 사용하여 게임 화면의 정보를 분석하고, 적의 위치, 장...2025.05.08
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
amazon.com의 클라우드 컴퓨팅 활동 요약2025.01.271. 인프라 서비스 EC2: 가상 서버 생성 및 관리 기능 제공, 다양한 인스턴스 유형 지원 S3: 객체 저장소 서비스, 데이터 백업, 아카이빙, 분석 등에 활용 가능 2. 데이터베이스 서비스 RDS: 관계형 데이터베이스 관리 시스템 설정 및 관리 지원, 자동 백업, 소프트웨어 패치, 복원 등 제공 DynamoDB: 완전 관리형 NoSQL 데이터베이스, 빠른 응답 속도와 무제한 확장성 제공 3. AI 및 머신러닝 SageMaker: 머신러닝 모델 구축, 훈련 및 배포를 위한 통합 개발 환경 Rekognition: 이미지와 비디오 분...2025.01.27
-
인공지능의 개념과 기술 그리고 활용사례2025.01.021. 인공지능의 개념 인공지능은 기계가 인간의 지능을 모방하거나 구현하는 기술을 의미합니다. 이는 문제 해결, 학습, 추론, 자연어 이해 등의 인간의 지능적인 능력을 컴퓨터 프로그램이나 기계가 수행할 수 있도록 하는 분야를 포함합니다. 강한 인공지능은 인간과 동등한 지능을 가진 인공 시스템을 의미하며, 약한 인공지능은 특정한 작업이나 문제 해결에 특화된 인공 시스템을 의미합니다. 2. 인공지능의 주요 기술 인공지능의 주요 기술에는 머신러닝, 딥러닝, 자연어 처리가 있습니다. 머신러닝은 데이터에서 학습하고 패턴을 인식하여 결정을 내리...2025.01.02
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04