
총 87개
-
데이터 사이언티스트 - 21세기 최고의 직업2025.01.191. 데이터 사이언티스트의 정의와 필요성 21세기 들어 정보와 데이터의 중요성이 급격히 증가했으며, 기업과 정부, 연구기관 등 다양한 분야에서 데이터의 수집과 분석을 통해 새로운 가치를 창출하고 있다. 이 과정에서 핵심적인 역할을 하는 직업이 바로 데이터 사이언티스트이다. 데이터 사이언티스트는 통계학자와 데이터 엔지니어와 구분되는 독특한 역할을 한다. 2. 데이터 사이언티스트의 매력과 인기도 데이터 사이언티스트 직업의 매력은 높은 수요와 보상, 다양한 산업에서의 활용, 기술 발전에 따른 지속적인 학습 기회, 사회적 가치 창출 등 다...2025.01.19
-
아마존 웹 서비스(AWS)의 클라우드 컴퓨팅 활동 요약2025.01.161. 아마존 클라우드의 주요 서비스 종류 및 기능 아마존 웹 서비스(AWS)는 컴퓨팅, 스토리지, 데이터베이스 등 다양한 클라우드 서비스를 제공하고 있다. 컴퓨팅 서비스로는 Amazon EC2, AWS Lambda 등이 있으며, 스토리지 서비스로는 Amazon S3, Amazon EBS 등이 있다. 데이터베이스 서비스로는 Amazon Aurora, Amazon DynamoDB 등이 있다. 이러한 다양한 클라우드 서비스를 통해 기업들은 IT 인프라를 효율적으로 운영할 수 있다. 2. 향후 예상되는 클라우드 서비스 향후 클라우드 서비스...2025.01.16
-
확률과 통계 탐구 보고서(일상생활에서 통계를 활용할 수 있는 방법)2025.01.151. 확률 동일한 원인 하에서 어떤 특정한 사건이 발생할 수 있는 가능성을 수로 나타낸 것이다. 2. 통계 다양하게 수집한 데이터를 바탕으로 이를 분석하여 수치로 나타내는 것이다. 3. 인공지능(AI) 머신러닝이나 딥러닝과 같이 인간의 학습, 추론, 자연언어 이해 역량을 컴퓨터 알고리즘으로 실현한 기술을 의미한다. 4. 머신러닝(Machine Learning) 인간의 지능을 모사한 데이터 학습을 통해서 데이터에 내재하는 패턴이나 규칙을 찾아내는 역할을 하는 AI의 핵심 알고리즘이다. 5. 딥러닝(Deep Learning) 대규모 비...2025.01.15
-
기업의 경영활동에서 발생한 문제를 해결하기 위한 노력2025.05.041. 기업의 빅데이터 활용 비즈니스 환경의 변화에 따라 정보시스템의 필요성이 대두되면서 기업들은 정보를 경영의 필수 요소로 판단하고 있다. 이에 따라 정보를 처리할 수 있는 시스템인 '빅데이터'가 발전하게 되었다. 금융권에서는 빅데이터 기반 머신러닝을 이용하여 이상금융거래를 사전에 탐지하고 방지하고 있으며, 신한은행은 SACP(Shinhan AI Core Platform)에 머신러닝 자기학습 프로세스를 도입하여 모형 재개발 비용과 시간을 절감하고 신용평가 모형을 지속적으로 최신화하여 신속한 대응력을 갖추게 되었다. 이처럼 빅데이터는...2025.05.04
-
머신러닝 효과검증2025.05.101. 머신러닝 효과검증 머신러닝 과제의 실제 효과를 보여주기 위해 다음과 같은 방법들을 고려할 수 있습니다: 정량적인 성능 개선, 시간과 비용 절감, 예측 능력 개선, 인사이트 제공, 실제 시스템 통합. 이러한 방법들을 통해 머신러닝 과제의 실제 효과를 증명할 수 있습니다. 과제의 목적과 환경에 따라 적절한 방식으로 결과를 제시하는 것이 중요합니다. 2. 제조 수율영향성 분석 수율 영향성을 분석하는 머신러닝 과제를 위한 분석 툴을 제작하기 위해 다음과 같은 절차를 따를 수 있습니다: 데이터 수집, 데이터 전처리, 특성 선택 및 추출...2025.05.10
-
4차 산업혁명과 인공지능2025.04.261. 인공지능 인공지능은 기계로부터 만들어진 지능을 의미하며, 컴퓨터와 소프트웨어, 기계를 통해 만들어진다. 인공지능에는 강 인공지능과 약 인공지능이 있는데, 강 인공지능은 인간처럼 자유로운 사고가 가능하고 프로그램에 의해 자아를 가지고 있는 반면, 약 인공지능은 자의식이 결여되어 특정 분야에 선택적으로 개발되어 생산성을 높이고 인간의 한계를 극복하기 위해 만들어진다. 또한 인공지능에는 머신러닝과 딥러닝이 있는데, 머신러닝은 다수의 사건경험을 가지고 패턴을 학습해 통계를 바탕으로 판단을 내리는 것이며, 딥러닝은 머신러닝의 발전된 형...2025.04.26
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 및 전략적 배치2025.01.171. 수요 예측 방법론 수요 예측을 위해 시계열 분석과 머신 러닝 알고리즘을 활용할 수 있다. 시계열 분석은 과거 패턴을 바탕으로 미래를 예측하는 방법이며, 머신 러닝은 복잡한 데이터에서 패턴을 학습하여 예측하는 방법이다. 각각의 장단점이 있으므로, 상황에 따라 적절한 방법을 선택해야 한다. 2. 필요한 데이터 유형 및 수집 방법 수요 예측을 위해 필요한 데이터에는 이용 기록 데이터, 고객 프로필 데이터, 외부 환경 데이터가 있다. 이용 기록 데이터는 서비스 애플리케이션에서, 고객 프로필 데이터는 데이터베이스에서, 외부 환경 데이터...2025.01.17
-
웹 개발과 사용자 경험2025.05.131. 사용자 중심 디자인 사용자의 요구와 기대를 충족시키기 위한 사용자 중심 디자인 방법론은 웹 개발에서 매우 중요한 역할을 합니다. 이를 통해 사용자의 만족도와 충성도를 높이고, 제품의 사용성을 향상시킬 수 있습니다. 사용자 테스트, 프로토타이핑, 반복적 설계 과정 등이 핵심적인 접근법이 되고 있습니다. 2. 인공지능과 머신러닝 사용자 경험을 최적화하기 위해 인공지능(AI)과 머신러닝(ML) 기술이 활용되고 있습니다. 사용자의 행동 패턴을 분석하고 예측하여 개인화된 서비스를 제공하는 등 이러한 기술은 사용자 경험 향상에 기여하고 ...2025.05.13
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
방송통신대학교 통계데이터학과) 파이썬컴퓨팅 출석수업과제물 (30점 만점 A+)2025.01.261. 파이썬 개발 서비스 및 소프트웨어 파이썬은 ABC 언어의 특징을 계승하여 1991년 2월에 version 0.9.0을 시작으로 간결한 문법, 쉬운 사용성, 높은 확장성을 추구하는 프로그래밍 언어로 개발되었고, 1994년에 함수형 프로그래밍, 문자열 처리 기능 등을 추가한 version 1.0이 공개되면서 파이썬의 서막이 열렸다. 그 이후, version 2.0, 3.0을 거쳐 현재는 version 3.21.1까지 꾸준히 발전해왔다. 파이썬이 발전하게 된 중요한 계기는 다양한 라이브러리의 등장인데, 데이터과학 분야에서는 Nump...2025.01.26