
총 87개
-
(A0) 서울대학교 머신러닝을 위한 기초 수학 및 프로그래밍 실습 과제, 소논문2025.01.181. 머신러닝 기초 수학 및 프로그래밍 실습 이 자료는 서울대학교에서 진행된 머신러닝 수업의 과제와 소논문에 대한 내용입니다. 과제 7-1에서는 최종 프로젝트에 대한 1페이지 제안서 작성이 요구되었습니다. 제안서에는 예측, 분류, 값 예측 등의 아이디어와 데이터 수집 및 실현 계획이 포함되어야 합니다. 과제 7-2에서는 팬데믹 이후 여행하고 싶은 두 도시를 선택하고 이들 간의 거리를 계산하는 프로그래밍 과제가 주어졌습니다. 1. 머신러닝 기초 수학 및 프로그래밍 실습 머신러닝은 데이터 기반의 알고리즘을 통해 문제를 해결하는 기술로,...2025.01.18
-
비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 빅데이터를 활용함에 있어서 비즈니스의 혁신을 추구하는 개념이다. 현재 미국에서는 기존 애널리틱스 기법에 빅데이터 기술을 접목시켜 정확한 정보를 제공함에 있어서 신속한 의사결정을 가능하게 하는 애널리틱스가 확산되고 있는 상황이다. 비즈니스 애널리틱스는 전세계적으로 가장 빠르게 성장하는 첨단 정보기술이며, 기업은 데이터를 기반으로 전략을 수립하고 예측 분석을 통한 미래의 트렌드를 예측하면서 실시간 데이터 분석을 통해 즉각적인 결정을 내릴 수 있어야 한다. 2. 데이터 과학 데이터 과학은 빅...2025.01.26
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
영화 '머니볼'을 통해 본 일상생활에서의 통계학 적용2025.01.041. 통계학 통계학은 다양한 분야에서 활용되며, 기상예측, 선거 분석, 기업의 의사결정 등에 활용된다. 통계학은 수학적 분석을 통해 현상을 객관적으로 이해하고 예측할 수 있게 해준다. 또한 데이터 분석을 통해 소비자 니즈를 파악하고 만족도를 높이는 데 기여한다. 2. 일상 생활 속 통계학 적용 일상생활에서 통계학은 의견의 대표성 판단, 6시그마 기법을 통한 품질 관리, 빅데이터 분석 등에 활용된다. 통계학 지식을 바탕으로 데이터를 분석하면 일상에서 접하는 정보를 다양한 관점에서 해석할 수 있다. 통계학은 4차 산업혁명 시대의 데이터...2025.01.04
-
머신러닝, 딥러닝을 활용한 부동산 거래 지원 서비스 제안2025.01.041. 머신러닝과 딥러닝의 개념 머신러닝은 기계가 데이터와 알고리즘을 사용해 스스로 학습하고 지능을 높여가는 인공지능 기술이다. 딥러닝은 기계학습의 고차원적 수준으로, 연속된 층을 점진적으로 심도 있게 학습할 수 있다. 이를 통해 기계가 사람처럼 자연스럽게 사고하고 행동하는 것이 가능해진다. 2. 머신러닝과 딥러닝의 활용 사례 머신러닝과 딥러닝은 다양한 분야에서 활용되고 있다. 챗봇, 음성인식, 이미지 인식, 기계 번역 등이 대표적인 사례이다. 부동산 분야에서도 머신러닝을 활용해 부동산 가격 예측, 투자 의사결정 지원 등에 활용되고 ...2025.01.04
-
데이터베이스 관리 시스템은 많은 장점도 있지만 단점도 있다2025.01.241. 데이터베이스 백업과 회복의 복잡성 데이터베이스의 백업과 회복 절차가 복잡한 이유는 데이터베이스 자체의 본질적인 복잡성에서 시작된다. 현대 데이터베이스는 방대한 양의 데이터를 담고 있고, 각종 필드와 세부 구성이 매우 정밀하게 얽혀 있다. 또한 데이터베이스 환경에서는 이중화와 복제 기술을 통해 데이터를 보호하려는 시도가 이어지고 있는데, 이는 역설적으로 시스템 장애 시 회복 절차를 훨씬 복잡하게 만든다. 결국 데이터베이스 구조가 복잡할수록 백업과 회복 절차 또한 더 어렵고 정교하게 설계되지 않으면 안 된다. 2. 백업 및 회복 ...2025.01.24
-
통계학과 머신러닝에서의 회귀 분석 목적 비교2025.04.271. 통계학에서의 회귀 분석 통계학에서의 회귀 분석은 여러 변수 사이의 경향성을 분석하는 방법으로, 한 변수의 값이 다른 변수의 값을 설명할 수 있도록 두 변수의 관계를 수식으로 표현하고 데이터로부터 추정하는 분석을 의미한다. 단순 선형 회귀 분석, 다중 선형 회귀 분석, 비선형 회귀 분석 등 다양한 방법이 있다. 2. 머신 러닝에서의 회귀 분석 머신 러닝은 인공지능의 연구 분야 중 하나로, 인간의 학습 능력과 같은 기능을 컴퓨터에서 실현하고자 하는 기술이다. 머신 러닝에서의 회귀 분석은 입력 데이터를 기반으로 예측이나 결정을 도출...2025.04.27
-
혁신적인 AI 기술을 활용한 의료 진단2025.05.031. 세포 수준의 의료 진단 기술 세포 수준의 의료 진단을 위해서는 바이오마커를 활용하는 기술이 필요하다. 이는 세포와 관련된 유전자 및 단백질 등의 정보를 수집하고 해석함으로써 세포의 상태를 파악할 수 있는 기술이다. 2. AI 기술을 활용한 세포 수준 진단 기술 개발 AI 기술을 활용하여 바이오마커 정보를 더욱 정확하게 분석할 수 있는 세포 수준 진단 기술을 개발하는 것이 이 연구의 목표이다. 이를 위해, 다양한 머신 러닝 알고리즘을 활용한 세포 수준의 데이터 분석 방법을 연구할 것이다. 3. 세포 수준 진단 기술의 장단점 및 ...2025.05.03
-
인공지능의 학습과 강한 인공지능의 등장 가능성2025.05.091. 인공지능의 학습 인공지능의 핵심적인 특징은 그것이 학습을 할 수 있다는 것이다. 인공지능의 학습은 기본적으로 수많은 예시를 통해 이루어진다. 대표적인 학습 방식으로 머신러닝(Machine Learning)이 있다. 머신러닝(또는 기계학습)은 컴퓨터를 학습시켜 스스로 규칙을 형성하도록 하는 인공지능 개발 방식이다. 즉 머신러닝은 알고리즘(Algorithm)을 만들어 내는 알고리즘으로, 머신러닝을 통해 컴퓨터가 스스로 프로그램을 작성하기 때문에 사람은 별도의 프로그램을 작성할 필요가 없다. 딥 러닝 (Deep learning)은 ...2025.05.09
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11