
총 87개
-
학습러닝, 머신러닝 분석 레포트2025.05.051. 학습(learning) 학습(learning)이란 데이터를 이용하여 모델(model)을 학습시키는 과정을 말합니다. 이 과정에서 모델은 입력 데이터(input)와 출력 데이터(output)의 관계를 학습하게 되는데, 이를 통해 새로운 입력 데이터가 주어졌을 때 모델은 예측 결과를 출력할 수 있게 됩니다. 2. 블랙박스(black box) 블랙박스(black box)란 모델이 내부에서 어떠한 일이 일어나는지 알 수 없는 상황을 말합니다. 따라서 모델이 학습하는 과정에서 입력 데이터와 출력 데이터만을 이용하여 내부의 동작 원리를 ...2025.05.05
-
머신러닝에서의 차원축소2025.05.101. 차원 축소 차원 축소는 고차원 데이터를 저차원으로 변환하는 과정으로, 데이터의 복잡성을 줄이고 특징을 추출하거나 시각화하기 위해 사용됩니다. 주요 방법으로는 특징 선택과 특징 추출이 있으며, 차원 축소의 이점은 데이터 시각화, 계산 효율성 향상, 잡음 제거 등입니다. 2. 차원의 개념 차원은 데이터를 표현하기 위해 필요한 축의 수를 의미하며, 각 차원은 데이터의 특정 특성을 나타내는 변수 또는 속성이 됩니다. 차원이 높을수록 데이터의 복잡성과 계산 비용이 증가하므로 차원 축소가 필요합니다. 3. 특징(feature)의 개념 특...2025.05.10
-
데이터 사이언티스트 - 21세기 최고의 직업2025.01.191. 데이터 사이언티스트의 정의와 필요성 21세기 들어 정보와 데이터의 중요성이 급격히 증가했으며, 기업과 정부, 연구기관 등 다양한 분야에서 데이터의 수집과 분석을 통해 새로운 가치를 창출하고 있다. 이 과정에서 핵심적인 역할을 하는 직업이 바로 데이터 사이언티스트이다. 데이터 사이언티스트는 통계학자와 데이터 엔지니어와 구분되는 독특한 역할을 한다. 2. 데이터 사이언티스트의 매력과 인기도 데이터 사이언티스트 직업의 매력은 높은 수요와 보상, 다양한 산업에서의 활용, 기술 발전에 따른 지속적인 학습 기회, 사회적 가치 창출 등 다...2025.01.19
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
인과관계의 개념과 증명을 위한 세 가지 조건2025.05.031. 인과관계의 개념 인과관계는 어떤 사건이 다른 사건에 영향을 미치는 관계를 의미합니다. 즉, 한 사건이 다른 사건의 원인이 되는 관계를 말합니다. 인과관계는 시간적 선후관계, 논리적 관계, 다양한 요인의 영향을 받는 특징을 가지고 있습니다. 인과관계를 파악하는 것은 다양한 분야에서 중요한 의사결정을 내리는 데 도움이 됩니다. 2. 인과관계 증명을 위한 세 가지 조건 첫째, 두 사건 간에 상관관계가 존재해야 합니다. 둘째, 원인이 결과보다 먼저 발생해야 합니다. 셋째, 인과관계를 제외한 다른 요인의 영향을 제어해야 합니다. 이를 ...2025.05.03
-
경영정보시스템 - AWS 클라우드 컴퓨팅 서비스 분석2025.05.081. AWS 클라우드 컴퓨팅 서비스 AWS는 컴퓨팅, 스토리지, 데이터베이스, 분석 서비스는 물론 사물인터넷(IoT), 머신러닝 서비스 등 다양한 클라우드 컴퓨팅 서비스를 제공한다. 주요 서비스로는 Amazon EC2, Amazon S3, Amazon EBS, Amazon RDS, Amazon DynamoDB, Amazon Redshift, Amazon Kinesis, Amazon EMR, Amazon SageMaker, AWS IoT 등이 있다. 이러한 서비스는 확장성과 유연성이 뛰어나며 다양한 애플리케이션에 활용될 수 있다. 2...2025.05.08
-
슈퍼 마리오 - 인공지능은 어떻게 게임을 할까?2025.05.081. 데이터 기반 학습 인공지능은 슈퍼 마리오 게임 플레이 데이터를 사용하여 게임의 규칙과 패턴을 학습합니다. 이를 통해 어떤 상황에서 점프를 해야 하는지, 어떤 적과의 접촉을 피해야 하는지 등을 학습하게 됩니다. 2. 강화 학습 인공지능은 게임 플레이를 통해 보상과 벌점을 받고, 이를 통해 자동으로 학습하게 됩니다. 예를 들어 도착 지점에 도달하면 보상을 받고, 적에게 맞으면 벌점을 받는 식으로 학습하면서 게임을 플레이합니다. 3. 신경망과 패턴 인식 인공지능은 신경망 모델을 사용하여 게임 화면의 정보를 분석하고, 적의 위치, 장...2025.05.08
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
-
인공지능 머신러닝 지도학습, 비지도학습, 강화학습의 실사례2025.01.161. 지도학습(Supervised Learning) 지도학습은 입력한 데이터와 출력한 데이터를 각각 공급하여 작동하는 유형으로, 훈련을 통해 알고리즘이 입력값을 바탕으로 내용을 처리하고 모델을 수정하며 원하는 출력에 근접하는 결과물을 산출하게 됩니다. 이는 분류와 예측 문제에 유용한 학습 방법으로, 스팸 이메일 탐지 기능은 대표적인 사례입니다. 해당 모델은 '스팸 메일'과 '비스팸 메일'로 레이블이 지정된 이메일 데이터 집합을 통해 학습되며, 키워드, 발신자 정보, 이메일 구조 및 내용과 같은 특징을 사용하여 새로운 수신 이메일을 ...2025.01.16
-
인공지능의 개념 및 원리와 일상생활 및 교육 분야에서의 활용 사례2025.01.211. 인공지능의 개념 및 원리 인공지능(AI)은 인간의 학습 능력, 추론, 문제 해결 등의 지적 활동을 컴퓨터 시스템이 모방하도록 설계된 기술이다. 인공지능은 크게 강인공지능(AGI)과 약인공지능(ANI)으로 나뉘며, 핵심 원리 중 하나는 머신러닝(Machine Learning)이다. 머신러닝은 데이터로부터 패턴을 학습하고 예측을 수행하는 알고리즘을 개발하는 분야로, 지도학습과 비지도학습이 대표적이다. 2. 인공지능의 일상생활 활용 사례 일상생활에서 인공지능은 스마트폰의 음성 비서 기능, 교통 관리 시스템 등에 활용되고 있다. 20...2025.01.21