
총 87개
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
데이터베이스 관리 시스템은 많은 장점도 있지만 단점도 있다2025.01.241. 데이터베이스 백업과 회복의 복잡성 데이터베이스의 백업과 회복 절차가 복잡한 이유는 데이터베이스 자체의 본질적인 복잡성에서 시작된다. 현대 데이터베이스는 방대한 양의 데이터를 담고 있고, 각종 필드와 세부 구성이 매우 정밀하게 얽혀 있다. 또한 데이터베이스 환경에서는 이중화와 복제 기술을 통해 데이터를 보호하려는 시도가 이어지고 있는데, 이는 역설적으로 시스템 장애 시 회복 절차를 훨씬 복잡하게 만든다. 결국 데이터베이스 구조가 복잡할수록 백업과 회복 절차 또한 더 어렵고 정교하게 설계되지 않으면 안 된다. 2. 백업 및 회복 ...2025.01.24
-
통계학과 머신러닝에서의 회귀 분석 목적 비교2025.04.271. 통계학에서의 회귀 분석 통계학에서의 회귀 분석은 여러 변수 사이의 경향성을 분석하는 방법으로, 한 변수의 값이 다른 변수의 값을 설명할 수 있도록 두 변수의 관계를 수식으로 표현하고 데이터로부터 추정하는 분석을 의미한다. 단순 선형 회귀 분석, 다중 선형 회귀 분석, 비선형 회귀 분석 등 다양한 방법이 있다. 2. 머신 러닝에서의 회귀 분석 머신 러닝은 인공지능의 연구 분야 중 하나로, 인간의 학습 능력과 같은 기능을 컴퓨터에서 실현하고자 하는 기술이다. 머신 러닝에서의 회귀 분석은 입력 데이터를 기반으로 예측이나 결정을 도출...2025.04.27
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
-
우리 주변 머신러닝의 대표적인 혁신(편리성 등) 사례 연구2025.01.181. 문화공간과 전시관의 머신러닝 활용 문화공간과 전시관에서는 머신러닝을 활용한 관람객 맞춤형 서비스가 도입되고 있습니다. 예를 들어, 런던의 대영박물관은 머신러닝을 통해 방문객의 관심사를 분석하고, 맞춤형 투어 경로를 제공합니다. 이를 통해 관람객은 자신이 선호하는 전시물에 집중할 수 있으며, 보다 풍부한 관람 경험을 얻을 수 있습니다. 2. 매장 디스플레이에서의 머신러닝 활용 소매업체들은 머신러닝을 활용하여 고객의 구매 패턴을 분석하고, 이에 맞춰 매장 디스플레이를 최적화합니다. 예를 들어, 아마존 고(Amazon Go) 매장은...2025.01.18
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
인공지능의 학습과 강한 인공지능의 등장 가능성2025.05.091. 인공지능의 학습 인공지능의 핵심적인 특징은 그것이 학습을 할 수 있다는 것이다. 인공지능의 학습은 기본적으로 수많은 예시를 통해 이루어진다. 대표적인 학습 방식으로 머신러닝(Machine Learning)이 있다. 머신러닝(또는 기계학습)은 컴퓨터를 학습시켜 스스로 규칙을 형성하도록 하는 인공지능 개발 방식이다. 즉 머신러닝은 알고리즘(Algorithm)을 만들어 내는 알고리즘으로, 머신러닝을 통해 컴퓨터가 스스로 프로그램을 작성하기 때문에 사람은 별도의 프로그램을 작성할 필요가 없다. 딥 러닝 (Deep learning)은 ...2025.05.09
-
인공지능의 개념과 기술 그리고 활용사례2025.01.101. 인공지능의 개념 인공지능(AI)은 인간의 지능을 기계나 컴퓨터 소프트웨어로 구현하는 기술 또는 분야를 의미합니다. 즉, 인공지능은 기계가 인간의 학습, 추론, 문제해결 등의 지능적인 기능을 수행할 수 있는 능력을 가지도록 프로그래밍하거나 학습하는 컴퓨터 과학 분야입니다. 인공지능은 크게 '약한 인공지능(weak AI)'과 '강한 인공지능(Strong AI)'으로 나뉩니다. 약한 인공지능은 특정 작업이나 한정된 범위에서 인간 수준 또는 그 이상의 성능을 발휘할 수 있는 인공지능이며, 강한 인공지능은 모든 인간 지능 활동을 수행할...2025.01.10
-
컴퓨터공학과 프로젝트, 보고서 주제 추천2025.01.101. 머신러닝/인공지능 프로젝트 이미지 분류, 자연어 처리, 음성 인식 등과 같은 머신러닝 및 딥러닝 알고리즘을 활용한 프로젝트를 수행해볼 수 있다. 예를 들어, 손으로 쓴 숫자 인식, 감정 분석, 스팸 필터링 등의 주제를 다룰 수 있다. 2. 웹 개발 프로젝트 웹 애플리케이션 개발을 통해 프론트엔드와 백엔드 기술을 익힐 수 있다. 예를 들어, 블로그 플랫폼, 전자 상거래 웹사이트, 온라인 게임 등을 만들어 볼 수 있다. 3. 모바일 앱 개발 안드로이드나 iOS 플랫폼에서 모바일 앱을 개발하는 프로젝트를 수행해볼 수 있다. 예를 들...2025.01.10
-
혁신적인 AI 기술을 활용한 의료 진단2025.05.031. 세포 수준의 의료 진단 기술 세포 수준의 의료 진단을 위해서는 바이오마커를 활용하는 기술이 필요하다. 이는 세포와 관련된 유전자 및 단백질 등의 정보를 수집하고 해석함으로써 세포의 상태를 파악할 수 있는 기술이다. 2. AI 기술을 활용한 세포 수준 진단 기술 개발 AI 기술을 활용하여 바이오마커 정보를 더욱 정확하게 분석할 수 있는 세포 수준 진단 기술을 개발하는 것이 이 연구의 목표이다. 이를 위해, 다양한 머신 러닝 알고리즘을 활용한 세포 수준의 데이터 분석 방법을 연구할 것이다. 3. 세포 수준 진단 기술의 장단점 및 ...2025.05.03