
총 87개
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
선형회귀(Linear Regression)는 통계인가 머신 러닝인가?2025.05.081. 선형회귀 선형 회귀는 연속 값을 예측하는 데 사용되는 통계 방법입니다. 선형 회귀 모델은 두 변수 간의 관계를 설명하는 선형 방정식을 찾는 통계적 방법입니다. 선형 회귀 모델은 통계, 공학, 마케팅, 금융, 제조를 포함한 다양한 분야에서 사용됩니다. 선형 회귀는 데이터를 설명하고 미래를 예측하는 데 사용할 수 있는 가장 널리 사용되는 방법입니다. 2. 통계와 머신러닝 머신러닝의 등장으로 선형회귀는 주로 '지도 학습' 문제에서 사용됩니다. 선형회귀는 입력 변수와 출력 변수 사이의 선형적인 관계를 모델링하여 새로운 입력에 대한 출...2025.05.08
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
4차 산업혁명과 알고리즘(수학)2025.01.171. 4차 산업혁명 최근 인공지능 분야에 놀라운 성과가 나타나면서 인공지능은 미래의 일이 아니라 현실이 되고 있다. 그것은 빅데이터의 출현과 기계 스스로가 학습할 수 있는 '딥러닝(deep learning)'이라는 알고리즘의 개발 덕분이다. 알고리즘은 제 4차 산업혁명의 기초 작업으로 작용하고 있으며, 알고리즘을 안다는 것은 제 4차 산업혁명에 관한 이해도를 높이는 데 도움이 될 것이다. 2. 알고리즘 알고리즘이란 컴퓨터에서 쓰이는 용어로 어떤 문제의 해결을 위하여, 입력된 자료를 토대로 하여 원하는 출력을 유도하여 내는 규칙의 집...2025.01.17
-
컴퓨터공학과 프로젝트, 보고서 주제 추천2025.01.101. 머신러닝/인공지능 프로젝트 이미지 분류, 자연어 처리, 음성 인식 등과 같은 머신러닝 및 딥러닝 알고리즘을 활용한 프로젝트를 수행해볼 수 있다. 예를 들어, 손으로 쓴 숫자 인식, 감정 분석, 스팸 필터링 등의 주제를 다룰 수 있다. 2. 웹 개발 프로젝트 웹 애플리케이션 개발을 통해 프론트엔드와 백엔드 기술을 익힐 수 있다. 예를 들어, 블로그 플랫폼, 전자 상거래 웹사이트, 온라인 게임 등을 만들어 볼 수 있다. 3. 모바일 앱 개발 안드로이드나 iOS 플랫폼에서 모바일 앱을 개발하는 프로젝트를 수행해볼 수 있다. 예를 들...2025.01.10
-
통계학과 머신러닝에서의 회귀 분석 목적 비교2025.04.271. 통계학에서의 회귀 분석 통계학에서의 회귀 분석은 여러 변수 사이의 경향성을 분석하는 방법으로, 한 변수의 값이 다른 변수의 값을 설명할 수 있도록 두 변수의 관계를 수식으로 표현하고 데이터로부터 추정하는 분석을 의미한다. 단순 선형 회귀 분석, 다중 선형 회귀 분석, 비선형 회귀 분석 등 다양한 방법이 있다. 2. 머신 러닝에서의 회귀 분석 머신 러닝은 인공지능의 연구 분야 중 하나로, 인간의 학습 능력과 같은 기능을 컴퓨터에서 실현하고자 하는 기술이다. 머신 러닝에서의 회귀 분석은 입력 데이터를 기반으로 예측이나 결정을 도출...2025.04.27
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
성균관대 디지털플랫폼경영(Platform Business in Digital Economy) 교안 요약2025.01.201. 플랫폼 비즈니스 플랫폼은 외부 생산자와 소비자 간의 가치 창출 상호작용을 가능하게 하는 것으로, 다양한 선택, 검색, 시간 절약, 리뷰를 통한 정보 제공 등의 기능을 제공하여 비선형적인 효용과 가치 증대를 가져온다. 플랫폼의 주요 역할은 사용자 유치, 매칭, 거래 촉진이며, 이를 통해 네트워크 효과와 자체 가치를 창출한다. 2. 플랫폼 유형 플랫폼은 거래 플랫폼과 혁신 플랫폼으로 구분된다. 거래 플랫폼은 사용자 간 직접 거래를 중개하며, 혁신 플랫폼은 보완재 개발을 촉진한다. 플랫폼의 성공을 위해서는 적절한 시기 진입, 교차 ...2025.01.20
-
공업수학 ) 공업수학의 차원(次元, dimension) 도구 중 한 가지 선택 후 주제 대상의 효과적 활용에 대해 장점이나 근거, 예시 등을 구체적으로 제시하되 자기 고유 의견을 포함시켜 논술2025.01.241. 벡터(vector)의 효과적 활용 벡터는 선형대수학의 기본 단위라고 할 수 있으며 다양한 데이터들을 쉽게 표현할 수 있다는 점이 큰 장점이라고 할 수 있다. 데이터를 다양한 피처로 표현할 수 있으며, 피처를 목록화시키게 되면 데이터 사이언스에서는 벡터가 곧 피처의 목록이 될 수 있어 데이터 특징을 쉽게 표현할 수 있다는 점이 장점이고 효과적인 활용으로 평가될 수 있다. 또한 데이터들을 표현하는 식을 찾기 위해서 좌표계를 활용해 식을 찾을 수 있는 지도를 만들 수 있다는 점에서 효과적인 활용으로 평가될 수 있다. 최근 머신러닝과...2025.01.24