총 87개
-
파이썬프로그래밍 - 파이썬의 개념과 특징을 정의하고, 파이썬으로 할 수 있는 일 3가지를 실제 사례를 들어 작성하시오.2025.01.161. 파이썬의 개념과 특징 파이썬은 1991년 귀도 반 로섬(Guido van Rossum)에 의해 개발된 고급 프로그래밍 언어입니다. 파이썬은 읽기 쉬운 문법과 동적 타이핑(dynamic typing), 인터프리터(interpreter) 방식의 언어로 잘 알려져 있습니다. 또한 객체 지향 프로그래밍(Object-Oriented Programming)과 함수형 프로그래밍(Functional Programming)을 지원합니다. 파이썬의 주요 특징으로는 간결하고 읽기 쉬운 문법, 광범위한 표준 라이브러리, 플랫폼 독립성, 동적 타이핑...2025.01.16
-
인공지능의 개념과 기술 그리고 활용사례2025.01.101. 인공지능의 개념 인공지능(AI)은 인간의 지능을 기계나 컴퓨터 소프트웨어로 구현하는 기술 또는 분야를 의미합니다. 즉, 인공지능은 기계가 인간의 학습, 추론, 문제해결 등의 지능적인 기능을 수행할 수 있는 능력을 가지도록 프로그래밍하거나 학습하는 컴퓨터 과학 분야입니다. 인공지능은 크게 '약한 인공지능(weak AI)'과 '강한 인공지능(Strong AI)'으로 나뉩니다. 약한 인공지능은 특정 작업이나 한정된 범위에서 인간 수준 또는 그 이상의 성능을 발휘할 수 있는 인공지능이며, 강한 인공지능은 모든 인간 지능 활동을 수행할...2025.01.10
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
공업수학 ) 공업수학의 차원(次元, dimension) 도구 중 한 가지 선택 후 주제 대상의 효과적 활용에 대해 장점이나 근거, 예시 등을 구체적으로 제시하되 자기 고유 의견을 포함시켜 논술2025.01.241. 벡터(vector)의 효과적 활용 벡터는 선형대수학의 기본 단위라고 할 수 있으며 다양한 데이터들을 쉽게 표현할 수 있다는 점이 큰 장점이라고 할 수 있다. 데이터를 다양한 피처로 표현할 수 있으며, 피처를 목록화시키게 되면 데이터 사이언스에서는 벡터가 곧 피처의 목록이 될 수 있어 데이터 특징을 쉽게 표현할 수 있다는 점이 장점이고 효과적인 활용으로 평가될 수 있다. 또한 데이터들을 표현하는 식을 찾기 위해서 좌표계를 활용해 식을 찾을 수 있는 지도를 만들 수 있다는 점에서 효과적인 활용으로 평가될 수 있다. 최근 머신러닝과...2025.01.24
-
데이터베이스 관리 시스템은 많은 장점도 있지만 단점도 있다2025.01.241. 데이터베이스 백업과 회복의 복잡성 데이터베이스의 백업과 회복 절차가 복잡한 이유는 데이터베이스 자체의 본질적인 복잡성에서 시작된다. 현대 데이터베이스는 방대한 양의 데이터를 담고 있고, 각종 필드와 세부 구성이 매우 정밀하게 얽혀 있다. 또한 데이터베이스 환경에서는 이중화와 복제 기술을 통해 데이터를 보호하려는 시도가 이어지고 있는데, 이는 역설적으로 시스템 장애 시 회복 절차를 훨씬 복잡하게 만든다. 결국 데이터베이스 구조가 복잡할수록 백업과 회복 절차 또한 더 어렵고 정교하게 설계되지 않으면 안 된다. 2. 백업 및 회복 ...2025.01.24
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.181. 데이터베이스와 인공지능의 상호작용 데이터베이스와 인공지능은 밀접한 관계를 가지고 있습니다. 인공지능 알고리즘은 대량의 데이터를 필요로 하며, 데이터베이스 시스템은 이러한 데이터를 효율적으로 관리하고 활용할 수 있게 해줍니다. 데이터베이스는 실시간 처리와 대용량 데이터 활용을 위해 진화하고 있으며, 이를 통해 인공지능 기술의 발전을 지원하고 있습니다. 이러한 상호작용은 다양한 분야에서 혁신과 가치를 창출하고 있습니다. 2. 데이터 구조화와 데이터베이스의 역할 데이터의 구조화는 인공지능 기술의 효율성과 정확성을 높이는 데 중요한 ...2025.01.18
-
성균관대 디지털플랫폼경영(Platform Business in Digital Economy) 교안 요약2025.01.201. 플랫폼 비즈니스 플랫폼은 외부 생산자와 소비자 간의 가치 창출 상호작용을 가능하게 하는 것으로, 다양한 선택, 검색, 시간 절약, 리뷰를 통한 정보 제공 등의 기능을 제공하여 비선형적인 효용과 가치 증대를 가져온다. 플랫폼의 주요 역할은 사용자 유치, 매칭, 거래 촉진이며, 이를 통해 네트워크 효과와 자체 가치를 창출한다. 2. 플랫폼 유형 플랫폼은 거래 플랫폼과 혁신 플랫폼으로 구분된다. 거래 플랫폼은 사용자 간 직접 거래를 중개하며, 혁신 플랫폼은 보완재 개발을 촉진한다. 플랫폼의 성공을 위해서는 적절한 시기 진입, 교차 ...2025.01.20
-
사물인터넷과 빅데이터의 관계 및 기회와 위협요인2025.01.211. 사물인터넷과 빅데이터의 관계 사물인터넷 환경에서는 대량의 센서데이터가 발생하게 되며, 이를 분석하기 위해 머신러닝 기술이 중요해지고 있다. 사물인터넷에서 발생하는 대량의 데이터를 분석하여 유의미한 정보를 도출하고 미래를 예측하는 것이 빅데이터의 역할이다. 2. 사물인터넷과 빅데이터 활용 사례 코카콜라의 프리스타일 음료 자판기와 디컨스트럭션의 공사현장 관리 시스템 등 사물인터넷 기술과 빅데이터 분석을 활용한 사례를 소개하였다. 이를 통해 실시간 관리와 고객 맞춤형 서비스 제공 등의 효과를 얻을 수 있다. 3. 사물인터넷 시대의 ...2025.01.21
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
머신러닝, 딥러닝을 활용한 부동산 거래 지원 서비스 제안2025.01.041. 머신러닝과 딥러닝의 개념 머신러닝은 기계가 데이터와 알고리즘을 사용해 스스로 학습하고 지능을 높여가는 인공지능 기술이다. 딥러닝은 기계학습의 고차원적 수준으로, 연속된 층을 점진적으로 심도 있게 학습할 수 있다. 이를 통해 기계가 사람처럼 자연스럽게 사고하고 행동하는 것이 가능해진다. 2. 머신러닝과 딥러닝의 활용 사례 머신러닝과 딥러닝은 다양한 분야에서 활용되고 있다. 챗봇, 음성인식, 이미지 인식, 기계 번역 등이 대표적인 사례이다. 부동산 분야에서도 머신러닝을 활용해 부동산 가격 예측, 투자 의사결정 지원 등에 활용되고 ...2025.01.04