
총 87개
-
스마트폰을 이용한 음식물 인식 및 칼로리 분석 애플리케이션 개발2025.01.231. 패턴인식 시스템의 구성요소와 처리 절차 패턴인식 시스템은 데이터로부터 유의미한 패턴을 인식하고 분류하는 기술로, 데이터 수집, 전처리, 특징 추출, 분류기 설계, 결과 해석의 다섯 가지 주요 구성 요소로 이루어진다. 이러한 구성 요소와 처리 절차는 음식물 인식 및 칼로리 분석 애플리케이션 개발에 필수적인 기반을 제공한다. 2. 음식물 인식 애플리케이션 개발 시 고려사항 음식물 인식 및 칼로리 분석 애플리케이션 개발 시 고려해야 할 사항으로는 높은 인식 정확도, 사용자 친화적인 인터페이스, 데이터 보안과 프라이버시, 다양한 음식...2025.01.23
-
미래사회와 소프트웨어 과제 012025.01.291. GPU(Graphic Processing Unit) GPU는 컴퓨터에 들어있는 부품 중 하나로, 주로 그래픽 렌더링 작업을 수행하는 데 사용되지만 최근에는 과학 계산, 인공지능, 데이터 분석 등 다양한 용도로 활용되고 있다. GPU는 CPU와 달리 많은 연산을 병렬적으로 처리할 수 있는 강점이 있어 그래픽 및 영상처리, 인공지능, 머신러닝, 데이터 분석, 과학적 시뮬레이션 등의 작업에 유용하게 사용된다. 또한 GPU는 암호화폐 채굴 과정에서 중요한 역할을 하며, 머신러닝과 딥러닝에도 활용된다. 2. CPU와 GPU의 차이 CP...2025.01.29
-
미래 산업에서의 RPA의 역할2025.04.281. RPA(Robotic Process Automation) RPA는 소프트웨어 로봇이 다양한 산업에서 인간이 수행하는 반복적이고 일상적인 규칙 기반 작업을 자동화할 수 있도록 하는 기술입니다. RPA는 수동 작업을 자동화하고 인적 오류를 줄여 효율성, 정확성 및 속도를 높이는 것을 목표로 합니다. RPA의 개념은 제조 산업의 로봇 자동화에서 시작되었으며, 2000년대 초반부터 기업들이 비즈니스 프로세스에 소프트웨어 로봇을 사용하기 시작했습니다. RPA는 기존 자동화와 달리 사용자 인터페이스 수준에서 작동하며, 복잡한 코딩이나 I...2025.04.28
-
머신러닝과 수율 영향인자 분석하기2025.05.101. 수율 영향 요소 제조 과정에서 수율에 영향을 미치는 주요 요소로는 원자재 품질, 공정 설계 및 제어, 장비 및 기술, 작업자의 기술과 교육, 품질 관리 시스템, 환경 조건 등이 있습니다. 이러한 요소들은 제조 산업의 특성과 제품에 따라 다를 수 있지만, 일반적으로 수율 향상을 위해서는 이러한 요소들을 관리하고 최적화하는 것이 중요합니다. 2. 머신러닝을 활용한 수율 영향성 분석 머신러닝을 활용하여 수율 영향성을 분석하기 위해서는 데이터 수집, 전처리, 특성 선택 및 추출, 모델 구축, 학습 및 평가, 결과 해석 등의 단계를 거...2025.05.10
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
머신러닝에서의 차원축소2025.05.101. 차원 축소 차원 축소는 고차원 데이터를 저차원으로 변환하는 과정으로, 데이터의 복잡성을 줄이고 특징을 추출하거나 시각화하기 위해 사용됩니다. 주요 방법으로는 특징 선택과 특징 추출이 있으며, 차원 축소의 이점은 데이터 시각화, 계산 효율성 향상, 잡음 제거 등입니다. 2. 차원의 개념 차원은 데이터를 표현하기 위해 필요한 축의 수를 의미하며, 각 차원은 데이터의 특정 특성을 나타내는 변수 또는 속성이 됩니다. 차원이 높을수록 데이터의 복잡성과 계산 비용이 증가하므로 차원 축소가 필요합니다. 3. 특징(feature)의 개념 특...2025.05.10
-
비즈니스 애널리틱스란 무엇인지 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 데이터를 기반으로 혁신을 추구하는 기업들의 성공 사례를 보여준다. 아마존과 넷플릭스는 고객 데이터를 분석하여 개인화된 추천 서비스를 제공하고, 새로운 콘텐츠 개발에 활용하는 등 비즈니스 애널리틱스를 효과적으로 활용하고 있다. 비즈니스 애널리틱스를 도입하기 위해서는 구체적인 목표 설정, 최신 기술 도입, 지속적인 데이터 분석 및 성과 평가가 필요하다. 2. 데이터 과학 데이터 과학은 데이터를 바탕으로 새로운 인사이트를 발견하는 융합적인 학문이다. 데이터 과학자는 컴퓨터 공학, 통계학, 수...2025.01.26
-
웹 개발과 사용자 경험2025.05.131. 사용자 중심 디자인 사용자의 요구와 기대를 충족시키기 위한 사용자 중심 디자인 방법론은 웹 개발에서 매우 중요한 역할을 합니다. 이를 통해 사용자의 만족도와 충성도를 높이고, 제품의 사용성을 향상시킬 수 있습니다. 사용자 테스트, 프로토타이핑, 반복적 설계 과정 등이 핵심적인 접근법이 되고 있습니다. 2. 인공지능과 머신러닝 사용자 경험을 최적화하기 위해 인공지능(AI)과 머신러닝(ML) 기술이 활용되고 있습니다. 사용자의 행동 패턴을 분석하고 예측하여 개인화된 서비스를 제공하는 등 이러한 기술은 사용자 경험 향상에 기여하고 ...2025.05.13
-
역사상 가장 위대한 정리 - 베이즈 정리2025.05.081. 베이즈 정리 베이즈 정리는 18세기 영국의 수학자 토머스 베이즈에 의해 처음으로 발표되었으며, 그 특이한 특성과 혁신적인 접근 방식으로 오랜기간 많은 이들에게 영감을 주고 있을 뿐 아니라, 최근 새롭게 다시 폭발적으로 주목받고 있습니다. 그 이유는 바로 머신러닝과 같은 새로운 분야에서의 그 쓰임이 점차 필수적인 요소가 되어가고 있기 때문입니다. 베이지안을 활용한 머신러닝은 데이터에서 불확실성과 확률적 추론을 다루는 데 베이즈 정리를 그 기반으로 하고 있습니다. 머신러닝에 베이즈 정리가 활용됨으로써 관측된 데이터를 바탕으로 예측...2025.05.08
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 전략2025.01.191. 수요 예측 방법 과거 데이터 분석, 회귀 분석, 머신러닝 모델 등 다양한 방법을 활용하여 전동 킥보드의 수요를 예측할 수 있다. 과거 이용 데이터를 분석하여 시간대별, 요일별, 계절별 이용 패턴을 파악하고, 날씨, 인구 밀도, 교통 상황 등 다양한 변수와의 관계를 분석하여 수요를 예측할 수 있다. 또한 머신러닝 모델을 활용하면 복잡한 패턴을 정확하게 포착할 수 있어, 수요 예측의 정밀도가 향상될 것이다. 2. 필요한 데이터 수요 예측을 위해 필요한 데이터에는 과거 이용 데이터, 인구 및 인구 이동 데이터, 날씨 데이터, 교통 ...2025.01.19