총 87개
-
마이크로 모빌리티 서비스의 효과적인 수요 예측2025.01.201. 수요 예측 마이크로 모빌리티 서비스인 전동 킥보드의 수요를 정확하게 예측하기 위해서는 과거의 이용 기록 데이터와 더불어 계절적인 변동, 특별한 이벤트 등 다양한 외부 요인을 종합적으로 고려해야 합니다. 시계열 분석과 머신 러닝 알고리즘을 활용하여 실시간으로 변화하는 상황에 신속하게 대응할 수 있는 정교한 예측 모델을 구축하는 것이 중요합니다. 2. 데이터 수집 수요 예측을 위해서는 사용자의 주행 패턴, 이용 시간대, 이동 거리 등의 이용 기록 데이터와 날씨 정보, 이벤트 및 축제 일정 등 다양한 데이터를 수집해야 합니다. 이렇...2025.01.20
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
성공적인 머신러닝 모델링을 위한 프로세스2025.01.151. 결정 트리 알고리즘 결정 트리(Decision Tree)는 지도 학습(Supervised Learning)에서 사용되는 머신러닝 알고리즘 중 하나입니다. 이 알고리즘은 데이터를 분석하고 특정 기준에 따라 여러 개의 의사 결정 규칙을 만들어내는 방식으로 동작합니다. 이러한 의사 결정 규칙들을 트리 구조로 나타내기 때문에 '결정 트리'라는 이름이 붙었습니다. 의사 결정 트리는 금융, 의료, NLP, 추천 시스템 및 프로세스 최적화 내에서 주로 사용되며, 다양한 도메인에 걸친 의사결정 트리의 다양성을 보여주고 많은 산업에서 실제 문...2025.01.15
-
인공지능의 개념과 기술 그리고 활용사례2025.01.091. 인공지능의 개념 인공지능은 인간의 학습, 추론, 문제 해결 등의 능력을 컴퓨터 프로그램이나 시스템을 통해 모방하거나 수행하는 기술을 의미합니다. 인공지능의 주요 특징 중 하나는 기계가 데이터를 학습하고 경험을 쌓아 나가는 능력을 가지고 있다는 것입니다. 이를 통해 기계는 문제를 해결하거나 패턴을 파악할 수 있으며, 인간의 학습과정을 모방하여 새로운 상황에 대처할 수 있게 됩니다. 2. 머신러닝과 딥러닝 머신러닝은 데이터를 기반으로 컴퓨터 시스템이 학습하고 예측을 수행하는 기술이며, 지도 학습, 비지도 학습, 강화 학습 등의 방...2025.01.09
-
아마존 웹 서비스(AWS)의 클라우드 컴퓨팅 활동 요약2025.01.161. 아마존 클라우드의 주요 서비스 종류 및 기능 아마존 웹 서비스(AWS)는 컴퓨팅, 스토리지, 데이터베이스 등 다양한 클라우드 서비스를 제공하고 있다. 컴퓨팅 서비스로는 Amazon EC2, AWS Lambda 등이 있으며, 스토리지 서비스로는 Amazon S3, Amazon EBS 등이 있다. 데이터베이스 서비스로는 Amazon Aurora, Amazon DynamoDB 등이 있다. 이러한 다양한 클라우드 서비스를 통해 기업들은 IT 인프라를 효율적으로 운영할 수 있다. 2. 향후 예상되는 클라우드 서비스 향후 클라우드 서비스...2025.01.16
-
비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 빅데이터를 활용함에 있어서 비즈니스의 혁신을 추구하는 개념이다. 현재 미국에서는 기존 애널리틱스 기법에 빅데이터 기술을 접목시켜 정확한 정보를 제공함에 있어서 신속한 의사결정을 가능하게 하는 애널리틱스가 확산되고 있는 상황이다. 비즈니스 애널리틱스는 전세계적으로 가장 빠르게 성장하는 첨단 정보기술이며, 기업은 데이터를 기반으로 전략을 수립하고 예측 분석을 통한 미래의 트렌드를 예측하면서 실시간 데이터 분석을 통해 즉각적인 결정을 내릴 수 있어야 한다. 2. 데이터 과학 데이터 과학은 빅...2025.01.26
-
amazon.com의 클라우드 컴퓨팅 활동 요약2025.01.271. 인프라 서비스 EC2: 가상 서버 생성 및 관리 기능 제공, 다양한 인스턴스 유형 지원 S3: 객체 저장소 서비스, 데이터 백업, 아카이빙, 분석 등에 활용 가능 2. 데이터베이스 서비스 RDS: 관계형 데이터베이스 관리 시스템 설정 및 관리 지원, 자동 백업, 소프트웨어 패치, 복원 등 제공 DynamoDB: 완전 관리형 NoSQL 데이터베이스, 빠른 응답 속도와 무제한 확장성 제공 3. AI 및 머신러닝 SageMaker: 머신러닝 모델 구축, 훈련 및 배포를 위한 통합 개발 환경 Rekognition: 이미지와 비디오 분...2025.01.27
-
혁신적인 AI 기술을 활용한 의료 진단2025.05.031. 세포 수준의 의료 진단 기술 세포 수준의 의료 진단을 위해서는 바이오마커를 활용하는 기술이 필요하다. 이는 세포와 관련된 유전자 및 단백질 등의 정보를 수집하고 해석함으로써 세포의 상태를 파악할 수 있는 기술이다. 2. AI 기술을 활용한 세포 수준 진단 기술 개발 AI 기술을 활용하여 바이오마커 정보를 더욱 정확하게 분석할 수 있는 세포 수준 진단 기술을 개발하는 것이 이 연구의 목표이다. 이를 위해, 다양한 머신 러닝 알고리즘을 활용한 세포 수준의 데이터 분석 방법을 연구할 것이다. 3. 세포 수준 진단 기술의 장단점 및 ...2025.05.03