
총 87개
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
-
확률과 통계 탐구 보고서(일상생활에서 통계를 활용할 수 있는 방법)2025.01.151. 확률 동일한 원인 하에서 어떤 특정한 사건이 발생할 수 있는 가능성을 수로 나타낸 것이다. 2. 통계 다양하게 수집한 데이터를 바탕으로 이를 분석하여 수치로 나타내는 것이다. 3. 인공지능(AI) 머신러닝이나 딥러닝과 같이 인간의 학습, 추론, 자연언어 이해 역량을 컴퓨터 알고리즘으로 실현한 기술을 의미한다. 4. 머신러닝(Machine Learning) 인간의 지능을 모사한 데이터 학습을 통해서 데이터에 내재하는 패턴이나 규칙을 찾아내는 역할을 하는 AI의 핵심 알고리즘이다. 5. 딥러닝(Deep Learning) 대규모 비...2025.01.15
-
성공적인 머신러닝 모델링을 위한 프로세스2025.01.151. 결정 트리 알고리즘 결정 트리(Decision Tree)는 지도 학습(Supervised Learning)에서 사용되는 머신러닝 알고리즘 중 하나입니다. 이 알고리즘은 데이터를 분석하고 특정 기준에 따라 여러 개의 의사 결정 규칙을 만들어내는 방식으로 동작합니다. 이러한 의사 결정 규칙들을 트리 구조로 나타내기 때문에 '결정 트리'라는 이름이 붙었습니다. 의사 결정 트리는 금융, 의료, NLP, 추천 시스템 및 프로세스 최적화 내에서 주로 사용되며, 다양한 도메인에 걸친 의사결정 트리의 다양성을 보여주고 많은 산업에서 실제 문...2025.01.15
-
대학 부설 한국어 어학당을 AI로 분석 적용(인공지능과 데이터마이닝 과제)2025.05.141. 어학연수생 유치 예측 마케팅 기술을 활용하여 과거 10년간의 모집 인원 데이터를 분석하고 국가별, 지역별, 성별, 연령별, 성취도, 모집기관별 등의 데이터를 활용한 CRM 데이터를 구축할 수 있습니다. 이를 통해 시기에 맞는 맞춤형 마케팅 정보를 제공할 수 있습니다. 또한 모집 프로세스에 AI를 도입하여 서류 검토, AI 인터뷰, 챗봇 상담 등을 자동화함으로써 업무 프로세스를 개선하고 효율성을 높일 수 있습니다. 2. 교육시스템 개선 AI 학습 플랫폼을 개발하여 학생들이 본국에서 입국 전부터 사전 학습을 할 수 있도록 하고, ...2025.05.14
-
비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 빅데이터를 활용함에 있어서 비즈니스의 혁신을 추구하는 개념이다. 현재 미국에서는 기존 애널리틱스 기법에 빅데이터 기술을 접목시켜 정확한 정보를 제공함에 있어서 신속한 의사결정을 가능하게 하는 애널리틱스가 확산되고 있는 상황이다. 비즈니스 애널리틱스는 전세계적으로 가장 빠르게 성장하는 첨단 정보기술이며, 기업은 데이터를 기반으로 전략을 수립하고 예측 분석을 통한 미래의 트렌드를 예측하면서 실시간 데이터 분석을 통해 즉각적인 결정을 내릴 수 있어야 한다. 2. 데이터 과학 데이터 과학은 빅...2025.01.26
-
방송통신대학교 통계데이터학과) 파이썬컴퓨팅 출석수업과제물 (30점 만점 A+)2025.01.261. 파이썬 개발 서비스 및 소프트웨어 파이썬은 ABC 언어의 특징을 계승하여 1991년 2월에 version 0.9.0을 시작으로 간결한 문법, 쉬운 사용성, 높은 확장성을 추구하는 프로그래밍 언어로 개발되었고, 1994년에 함수형 프로그래밍, 문자열 처리 기능 등을 추가한 version 1.0이 공개되면서 파이썬의 서막이 열렸다. 그 이후, version 2.0, 3.0을 거쳐 현재는 version 3.21.1까지 꾸준히 발전해왔다. 파이썬이 발전하게 된 중요한 계기는 다양한 라이브러리의 등장인데, 데이터과학 분야에서는 Nump...2025.01.26
-
비즈니스 애널리틱스의 정의와 관련 용어 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics, BA)는 데이터를 분석하여 기업이 비즈니스 의사결정을 내리는 데 필요한 인사이트를 제공하는 과정이다. 비즈니스 애널리틱스의 역사는 기업이 데이터의 활용을 통해 의사결정을 최적화하려는 노력에서 시작되었다. 비즈니스 애널리틱스는 기술적 분석, 예측적 분석, 처방적 분석 등 세 가지 유형으로 나뉜다. 2. 데이터 과학 데이터 과학은 정형 및 비정형 데이터를 분석해 유용한 정보를 추출하는 과정으로, 데이터 수집 및 관리, 데이터 분석, 결과 시각화 및 커뮤니케...2025.01.26
-
정보통신망4C 에지 컴퓨팅 Edge Computing 조사설명하고 에지 컴퓨팅을 위해 활용될 수 있는 정보통신기술에 관하여 서술하시오2025.01.251. 에지 컴퓨팅 정의 및 필요성 에지 컴퓨팅(Edge Computing)은 중앙 데이터 처리 시스템에서 데이터를 처리하는 대신, 데이터를 생성하는 위치 또는 가까운 위치에서 데이터 처리 및 분석을 수행하는 분산 컴퓨팅 기술입니다. 에지 컴퓨팅은 대역폭 절감, 데이터 프라이버시 보호, IoT 기기와의 통합, 네트워크 지연 감소 등의 장점이 있어 실시간 응용 프로그램, 산업 자동화, 스마트 시티 등 다양한 분야에서 필요성이 높아지고 있습니다. 2. 에지 컴퓨팅 장점과 문제점 에지 컴퓨팅의 주요 장점은 낮은 대기 시간, 대역폭 절감, ...2025.01.25
-
숨겨진 물리적 변수 발견을 위한 머신 러닝 알고리즘2025.01.161. 머신 러닝 알고리즘 최근 과학의 발전이 점차 복잡한 방향으로 나아가면서, 이를 이해하고 분석하기 위한 방법론에 대한 필요성이 증가하고 있다. 특히 물리학에서는 복잡한 물리적 현상을 설명하기 위해 다양한 변수들을 식별하고 이들 간의 관계를 정의하는 과정이 요구되는데, 이는 굉장히 복잡하고 어려운 작업이다. 이러한 배경 속에서 컬럼비아 대학의 연구진이 개발한 머신 러닝 알고리즘은 동작 관련 영상만을 보고도 관련된 물리적 변수를 발견하고 산출하는 능력을 갖추고 있다. 2. 물리적 변수 발견 이 알고리즘이 뛰어난 점은, 알려진 시스템...2025.01.16
-
인공지능 머신러닝 지도학습, 비지도학습, 강화학습의 실사례2025.01.161. 지도학습(Supervised Learning) 지도학습은 입력한 데이터와 출력한 데이터를 각각 공급하여 작동하는 유형으로, 훈련을 통해 알고리즘이 입력값을 바탕으로 내용을 처리하고 모델을 수정하며 원하는 출력에 근접하는 결과물을 산출하게 됩니다. 이는 분류와 예측 문제에 유용한 학습 방법으로, 스팸 이메일 탐지 기능은 대표적인 사례입니다. 해당 모델은 '스팸 메일'과 '비스팸 메일'로 레이블이 지정된 이메일 데이터 집합을 통해 학습되며, 키워드, 발신자 정보, 이메일 구조 및 내용과 같은 특징을 사용하여 새로운 수신 이메일을 ...2025.01.16