
총 87개
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
혁신적인 AI 기술을 활용한 의료 진단2025.05.031. 세포 수준의 의료 진단 기술 세포 수준의 의료 진단을 위해서는 바이오마커를 활용하는 기술이 필요하다. 이는 세포와 관련된 유전자 및 단백질 등의 정보를 수집하고 해석함으로써 세포의 상태를 파악할 수 있는 기술이다. 2. AI 기술을 활용한 세포 수준 진단 기술 개발 AI 기술을 활용하여 바이오마커 정보를 더욱 정확하게 분석할 수 있는 세포 수준 진단 기술을 개발하는 것이 이 연구의 목표이다. 이를 위해, 다양한 머신 러닝 알고리즘을 활용한 세포 수준의 데이터 분석 방법을 연구할 것이다. 3. 세포 수준 진단 기술의 장단점 및 ...2025.05.03
-
파이썬을 이용한 불법 사이트 탐지 및 차단2025.04.281. 불법 사이트 탐지 이 프로젝트는 파이썬을 사용하여 불법 사이트를 탐지하고 차단하는 기능을 제공합니다. 주요 기능으로는 구글 검색을 통해 불법 사이트 URL을 추출하고, 이를 hosts 파일에 차단하는 것입니다. 또한 머신러닝 기술을 활용하여 URL의 악성 여부를 판단하고, meta 태그의 키워드 필터링을 통해 유해 사이트를 탐지하는 기능을 포함하고 있습니다. 2. 구글 검색 및 URL 추출 이 프로젝트는 구글 검색을 통해 불법 사이트 URL을 추출하는 기능을 제공합니다. 특정 키워드로 구글 검색을 수행하고, 검색 결과에서 불법...2025.04.28
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
-
자율주행자는 어떻게 학습하고 운전할 수 있는지 기술하시오2025.01.111. 자율주행차의 개념과 중요성 자율주행차는 미래의 교통 시스템의 핵심 기술 중 하나이며, 인간의 운전 오류로 인한 교통사고를 줄이고, 교통 체증을 해소하며, 환경문제를 해결하는 데 큰 역할을 할 것으로 기대된다. 이러한 기술의 발전은 우리 사회에 긍정적인 영향을 미칠 것이며, 자율주행차의 개념과 중요성에 대한 이해와 함께 적극적인 지원이 필요하다. 2. 자율주행차의 학습 방법 자율주행차의 학습 방법에는 머신 러닝과 딥 러닝의 활용, 데이터 수집과 분석이 중요한 역할을 한다. 이러한 기술들은 자율주행차가 환경을 인식하고 판단하는 능...2025.01.11
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
스마트기술을 활용한 유지관리 인공지능, 머신러닝, 딥러닝 기술의 차이점2025.01.031. 인공지능 인공지능은 인간의 학습 능력과 추론 능력, 지각 능력 등을 컴퓨터 프로그램으로 실현한 기술을 말한다. 대표적인 인공지능 서비스로는 2018년에 SKT에서 출시한 AI 상담원 채티가 있다. 2. 머신러닝 머신러닝은 인공지능을 발전시키기 위해서 기계를 학습시키는 다양한 방법에 대한 학문이다. 대표적인 머신러닝 기술이 적용된 제품으로는 ADT 캡스가 2020년에 출시한 얼굴인식기를 통해 신분을 확인하는 '캡스 스마트패스'가 있다. 3. 딥러닝 딥러닝은 머신러닝보다 더 작은 개념으로 '신경망'을 통해서 인공지능을 만드는 머신...2025.01.03
-
인공지능의 개념과 기술 그리고 활용사례2025.01.091. 인공지능의 개념 인공지능은 인간의 학습, 추론, 문제 해결 등의 능력을 컴퓨터 프로그램이나 시스템을 통해 모방하거나 수행하는 기술을 의미합니다. 인공지능의 주요 특징 중 하나는 기계가 데이터를 학습하고 경험을 쌓아 나가는 능력을 가지고 있다는 것입니다. 이를 통해 기계는 문제를 해결하거나 패턴을 파악할 수 있으며, 인간의 학습과정을 모방하여 새로운 상황에 대처할 수 있게 됩니다. 2. 머신러닝과 딥러닝 머신러닝은 데이터를 기반으로 컴퓨터 시스템이 학습하고 예측을 수행하는 기술이며, 지도 학습, 비지도 학습, 강화 학습 등의 방...2025.01.09
-
머신러닝에서의 과적합 문제2025.05.101. 과적합(Overfitting) 과적합은 머신러닝에서 중요한 문제 중 하나입니다. 머신러닝 모델이 훈련 데이터에 너무 특화되어 있어 새로운 입력 데이터에 대한 예측 능력이 저하되는 현상을 말합니다. 이는 모델의 성능과 일반화(generalization) 능력을 감소시키며, 실제 응용에서 신뢰할 수 없는 결과를 초래할 수 있습니다. 2. 과적합의 원인 과적합은 데이터의 특성을 완벽하게 기억하는 것에서 비롯됩니다. 모델은 훈련 데이터에 맞추기 위해 복잡한 패턴과 노이즈까지도 학습할 수 있습니다. 일반적으로 데이터의 양이 적은 경우,...2025.05.10
-
역사상 가장 위대한 정리 - 베이즈 정리2025.05.081. 베이즈 정리 베이즈 정리는 18세기 영국의 수학자 토머스 베이즈에 의해 처음으로 발표되었으며, 그 특이한 특성과 혁신적인 접근 방식으로 오랜기간 많은 이들에게 영감을 주고 있을 뿐 아니라, 최근 새롭게 다시 폭발적으로 주목받고 있습니다. 그 이유는 바로 머신러닝과 같은 새로운 분야에서의 그 쓰임이 점차 필수적인 요소가 되어가고 있기 때문입니다. 베이지안을 활용한 머신러닝은 데이터에서 불확실성과 확률적 추론을 다루는 데 베이즈 정리를 그 기반으로 하고 있습니다. 머신러닝에 베이즈 정리가 활용됨으로써 관측된 데이터를 바탕으로 예측...2025.05.08