
총 2개
-
트랜스포머 모델링2025.05.061. 트랜스포머 모델 트랜스포머는 어텐션만으로 구성된 신경망 모델로, RNN이나 CNN의 단점을 보완한 모델입니다. 트랜스포머는 어텐션 메커니즘을 사용하며, 단어를 동시에 고려할 수 있고 입력에 순서 정보가 없다는 특징이 있습니다. 트랜스포머 인코더는 멀티헤드 셀프 어텐션으로 구성되어 있으며, 트랜스포머 디코더는 마스크드 멀티헤드 셀프 어텐션을 사용합니다. 2. CNN의 문제점 CNN은 커널을 이용하기 때문에 이미지의 특징을 추출하는데 있어 국소적인 부분만을 고려하는 문제점이 있습니다. 3. RNN의 문제점 RNN은 시간의 흐름에 ...2025.05.06
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.121. 인공지능이란 인공지능이란 인간 지능이 필요한 업무 등을 정상적으로 수행할 수 있는 컴퓨터 시스템의 이론과 개발, 그리고 시각 인식, 음성 인식, 의사 결정, 언어 번역 등을 수행하는 어플리케이션이나 능력을 의미한다. 2. 인공지능의 분류 인공지능은 강한 인공지능과 약한 인공지능으로 구분된다. 강한 인공지능은 사람과 같이 자유로운 사고와 감정표현 등을 하는 것이 가능하고 자아의식을 가지고 있는 인공지능을 의미하며, 약한 인공지능은 자의식이 없는 머신러닝 기법으로 만들어진 전문가 시스템을 의미한다. 3. 기계학습 기계학습은 컴퓨터...2025.05.12