
총 8개
-
[전기전자실험]1 오실로스코프 사용법 및 정류 회로(1)2025.01.231. 오실로스코프 사용법 오실로스코프의 내부 기능을 배우고 기본원리와 동작을 이해하며 측정을 위한 조정 단자를 익힌다. 오실로스코프의 구성, 동작원리, 조절기의 기능 등을 설명하고 있다. 2. 교류(AC) 전압 측정 오실로스코프를 사용하여 교류 신호의 전압, 주파수, 위상, 파형 등을 측정하는 방법을 설명하고 있다. 피크값, 피크-피크값, 실효값 등의 개념을 다루고 있다. 3. 직류(DC) 전압 측정 오실로스코프를 사용하여 직류 전압을 측정하는 방법을 설명하고 있다. 4. 트랜스포머(변압기) 유도성 전기 전도체를 통해 전기 에너지를...2025.01.23
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 Deep Learning과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 언어 이해와 생성을 수행하는 모델입니다. GPT, BERT 시리즈 등이 대표적이며, 사전에 학습된 방대한 파라미터와 맥락적 추론 능력을 통해 다양한 분야에서 활용되고 있습니다. LLM은 텍스트 상의 문맥 흐름을 예측하고 의미를 파악함으로써 정교한 언어 처리와 유연한 질의응답을 수행할 수 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트를 넘어 이미지, 음성, 영상 등 서로 다른 형태(모달)의 데이터를 통합적으...2025.01.26
-
Chat GPT에 대하여 (이 레포트는 Chat GPT를 활용하여 제작하였습니다)2025.04.301. Chat GPT Chat GPT는 인간과 유사한 텍스트를 생성하도록 설계된 언어 모델의 한 유형입니다. 이것은 OpenAI에 의해 개발되었으며, 주어진 프롬프트 또는 입력에 대해 인간과 같은 응답을 생성할 수 있는 기능을 가지고 있어 언어 번역, 질문 답변 및 챗봇 개발과 같은 자연어 처리 작업에 강력한 도구가 됩니다. Chat GPT는 감독되지 않은 학습 기술을 사용하여 대규모 텍스트 데이터에 대해 사전 훈련되며, 트랜스포머 아키텍처를 사용하여 문장에서 단어 간의 장기적인 의존성과 관계를 포착할 수 있습니다. 2. Chat ...2025.04.30
-
생성형 인공 지능 입문 족보 대비 문제은행(오프라인 기말고사, 세종대)2025.01.151. 생성형 인공지능이란? 생성형 인공지능은 데이터 전처리, 모델 학습, 결과 생성으로 구성되며, GPT와 ChatGPT와 같은 모델이 대표적입니다. 생성형 인공지능은 텍스트, 이미지, 소리, 동영상 등 다양한 콘텐츠 생성에 활용되지만, 데이터 의존성, 모델 복잡성, 윤리적 문제 등의 한계가 있습니다. 이를 해결하기 위해 데이터 증강, 전이 학습, 하드웨어 개선, 효율적인 알고리즘 개발 등의 방안이 필요합니다. 2. 언어 처리 신경망 개요 RNN은 순차 데이터 처리를 위해 필요하지만, 기울기 소실 문제가 있습니다. LSTM과 GRU...2025.01.15
-
Chat GPT의 기술적 구현_아키텍처 및 인프라2025.01.171. Chat GPT의 기본 아키텍처 Chat GPT의 근간이 되는 기술적 구조를 이해하는 것은 매우 중요합니다. 이 섹션에서는 Chat GPT의 기본 아키텍처를 구성하는 주요 요소들을 살펴봅니다. 트랜스포머 모델의 구조, 자기 주의 메커니즘, 다중 헤드 어텐션 등이 핵심적인 역할을 합니다. 2. 대규모 언어 모델 학습 방법 Chat GPT와 같은 대규모 언어 모델을 학습시키는 과정은 매우 복잡하고 정교합니다. 이 섹션에서는 사전 학습과 파인튜닝, 비지도 학습의 활용, 강화 학습을 통한 개선 등 Chat GPT의 학습 방법에 대해 ...2025.01.17
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 딥러닝과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 사람처럼 언어를 이해하고 생성할 수 있는 능력을 갖춘 모델입니다. 이는 자연어 처리(NLP) 기술의 발전을 기반으로 하며, 딥러닝 기술을 활용해 언어의 문법적 구조와 단어 간 의미적 관계를 학습합니다. LLM은 챗봇, 자동 번역, 텍스트 요약 등 다양한 분야에서 활용되고 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트뿐만 아니라 이미지, 소리, 동영상 등 다양한 데이터를 통합적으로 처리할 수 있는 인공지능 ...2025.01.26
-
챗GPT에게 묻는 인류의 미래 - 김대식 교수와 생성인공지능과의 대화 1장 발췌 요약2025.05.041. 챗GPT의 정의와 '학습' 챗GPT는 오픈 AI가 개발한 대규모 언어 모델이다. 인간처럼 텍스트를 이해하고 생성할 수 있도록 학습되었다. 또 질문에 대답하기, 정보 제공하기, 글쓰기 돕기와 같은 다양한 작업을 보조할 수 있다. 챗GPT는 GPT(Genterative Pre-training Transformer 생성적 사전학습 트랜스포머) 모델의 변형으로, 한 문장 안에서 앞에 오는 단어의 맥락을 고려해 다음 단어를 예측하도록 학습되었다. 2. 작동원리: 트랜스포머와 신경망 챗GPT 모델은 텍스트처럼 순차적 데이터를 처리하는 데...2025.05.04
-
트랜스포머 모델링2025.05.061. 트랜스포머 모델 트랜스포머는 어텐션만으로 구성된 신경망 모델로, RNN이나 CNN의 단점을 보완한 모델입니다. 트랜스포머는 어텐션 메커니즘을 사용하며, 단어를 동시에 고려할 수 있고 입력에 순서 정보가 없다는 특징이 있습니다. 트랜스포머 인코더는 멀티헤드 셀프 어텐션으로 구성되어 있으며, 트랜스포머 디코더는 마스크드 멀티헤드 셀프 어텐션을 사용합니다. 2. CNN의 문제점 CNN은 커널을 이용하기 때문에 이미지의 특징을 추출하는데 있어 국소적인 부분만을 고려하는 문제점이 있습니다. 3. RNN의 문제점 RNN은 시간의 흐름에 ...2025.05.06