총 27개
-
전기전자공학개론 ) 회로를 구성하는 소자 중 수동소자(저항, 인덕터, 커패시터)들의 개념과 기능 및 용도들을 설명해보자.2025.01.141. 저항 저항은 전기 회로의 기본적인 구성 요소 중 하나로, 그 기능과 중요성은 전기와 전자 분야에서 광범위하게 쓰이고 있다. 이 소자의 주된 역할은 회로 내에서 전류의 흐름을 제한하고, 이 과정에서 전력을 소비하는 것이다. 전기 저항의 작동 원리는 옴의 법칙에 의해 설명될 수 있으며, 이 법칙은 전류(I), 전압(V), 저항(R) 사이의 관계를 정의한다. 저항은 또한 회로 내에서 필요 이상의 전류가 흐르는 것을 방지함으로써, 과도한 전류로 인해 발생할 수 있는 손상으로부터 회로를 보호하는 데 중요한 역할을 한다. 2. 인덕터 인...2025.01.14
-
단순 교류 회로 실험2025.01.031. 교류 입력 신호에 대한 전압 분배 특성 이 실험에서는 교류 입력 신호에 대한 전압 분배 특성을 부하를 걸었을 때와 걸지 않았을 때 각각 검사하여 비교합니다. 또한 교류 신호에 대한 저항 회로에서 옴의 법칙과 키르히호프 법칙의 유효성을 확인합니다. 2. 교류 신호와 커패시터의 관계 이 실험에서는 교류 신호와 커패시터 사이의 관계를 확인합니다. 커패시터 양단의 전압과 커패시터를 통해 흐르는 전류 사이의 관계도 함께 살펴봅니다. 3. 교류 신호와 인덕터의 관계 이 실험에서는 교류 신호와 인덕터 사이의 관계를 이해합니다. 인덕터 양단...2025.01.03
-
기초회로실험 1주차 예비보고서 - R, L, C 소자의 이해2025.01.041. 저항 저항은 물질의 이동을 억제하는 소자로, 값이 클수록 전자의 이동이 어렵다. 저항의 단위는 옴(Ω)이며, 저항 R은 물질의 고유저항률 ρ, 길이 L, 단면적 S에 따라 R = ρL/S로 계산할 수 있다. 2. 커패시터 커패시터는 두 개의 도체 평판 사이에 절연물(유전체)를 채우고 평판 사이에 전압을 인가하면 평판에 전하가 모이는 회로소자이다. 커패시턴스 C는 단위 전압당 모을 수 있는 전하의 양으로, C = ε0εrS/d 로 계산할 수 있다. 커패시터는 직류용과 교류용으로 구분되며, 용량과 극성 등이 다르다. 3. 인덕터 ...2025.01.04
-
기초회로실험 1주차 결과 보고서 - R,L,C소자의 이해2025.01.041. 저항 실험을 통해 1kΩ와 10kΩ 저항의 저항값을 멀티미터로 측정하였다. 측정값은 오차 허용 범위 내에 있었으며, 색띠에 적힌 오차와 비교하였다. 이를 통해 저항의 물리적 특성과 측정 방법을 이해할 수 있었다. 2. 커패시터 0.047μF와 0.47μF 커패시터의 용량을 LCR미터로 측정하였다. 측정값은 오차 허용 범위 내에 있었으며, 세자리 숫자 표기 방법과 비교하였다. 이를 통해 커패시터의 물리적 특성과 측정 방법을 이해할 수 있었다. 3. 인덕터 1mH와 10mH 인덕터의 인덕턴스 값을 LCR미터로 측정하였다. 1mH ...2025.01.04
-
R, L, C 소자의 특성_결과레포트2024.12.311. R, L, C 소자의 특성 이번 실험에서는 입력 전압과 콘덴서 전압, 인덕터 전압의 위상차를 비교하여 실험을 진행하였습니다. 위상차가 약 90도로 나타났습니다. 교류 전원에서의 콘덴서와 축전기는 전류의 흐름을 방해하며, 콘덴서는 전하를 저장했다가 방출하는 역할을 합니다. 인덕터는 코일을 감은 형태로, 원리는 유도기전력에 의한 것입니다. 이에 의한 특성으로 콘덴서와 인덕터는 sin, cos의 사인함수 성분을 가져 위 실험에서 입력전압과 콘덴서 전압, 인덕터 전압의 위상차가 약 90도로 나타난 것으로 볼 수 있습니다. 1. R, ...2024.12.31
-
RC, RL 미적분 회로 예비 보고서2024.12.311. 커패시터의 전류-전압 특성 커패시터는 두 도체판 사이에 유전체를 두어 전하를 축적할 수 있는 소자입니다. 커패시터에 전압이 가해지면 전하가 축적되어 지수 함수적으로 전압이 증가하며, 방전 시에는 지수 함수적으로 전압이 감소합니다. 커패시터의 전류는 전압의 미분값에 비례합니다. 2. 인덕터의 전류-전압 특성 인덕터는 철심에 절연된 도체를 나선형으로 감은 소자로, 전압과 전류의 관계가 커패시터와 반대입니다. 인덕터에 전압이 가해지면 전류가 지수 함수적으로 증가하며, 전압이 제거되면 전류가 지수 함수적으로 감소합니다. 인덕터의 전압...2024.12.31
-
회로이론및실험1 11장 인덕터 A+ 결과보고서2025.01.131. 인덕터의 직렬 특성 인덕터를 직렬로 연결했을 때는 흐르는 전류가 같으므로 전류 I를 이용하여 각각의 인덕터에 걸리는 전압값을 계산할 수 있다. 총 인덕턴스는 회로의 각 인덕턴스의 합인 L1 + L2 + L3라고 계산할 수 있다. 2. 인덕터의 병렬 특성 인덕터를 병렬로 연결했을 때는 걸리는 전압이 같으므로 전압 V를 이용하여 각각의 인덕터에 흐르는 전류값을 계산할 수 있다. 회로의 총 인덕턴스는 각 인덕턴스의 역수의 합인 1/(1/L1 + 1/L2 + 1/L3)라고 계산할 수 있다. 3. 인덕터의 직류 및 교류 특성 인덕터는 ...2025.01.13
-
회로이론및실험1 11장 인덕터 A+ 예비보고서2025.01.131. 인덕터 인덕터는 전자기유도 현상을 이용하여 전류의 시간에 따른 변화로 유도기전력을 형성할 수 있게 고안된 장치입니다. 인덕터에 전류가 흐르면 감겨 있는 도선 주변에 자기장이 발생하며, 전류의 크기가 변하면 자기장도 변하게 되어 도선에 전압이 유도됩니다. 이러한 전압 유도 성질을 인덕턴스라고 하며, 단위는 H(헨리)입니다. 인덕터는 코일이 감겨서 노출되어 있는 솔레노이드 형태의 소자가 일반적이며, 내부 중심에 지성체를 사용하여 특성을 조정한 것도 있습니다. 또한 저항과 비슷한 형태의 리드 인덕터도 존재합니다. 2. RL 회로 R...2025.01.13
-
전기회로실험및설계 5주차 결과보고서 - 함수발생기와 오실로스코프의 사용법2025.01.151. 함수발생기 사용법 함수발생기를 사용하여 다양한 파형을 생성할 수 있습니다. 주파수, 진폭, 오프셋 등을 조절하여 원하는 파형을 만들 수 있습니다. 함수발생기는 전기회로 실험에서 중요한 도구로 사용됩니다. 2. 오실로스코프 사용법 오실로스코프를 사용하여 전기 신호의 파형을 관찰할 수 있습니다. 시간 축과 전압 축을 조절하여 신호의 특성을 분석할 수 있습니다. 오실로스코프는 전기회로 실험에서 필수적인 측정 장비입니다. 3. RMS 전압 계산 RMS(Root Mean Square) 전압은 교류 전압의 실효값을 나타냅니다. 정현파의 ...2025.01.15
-
교류및전자회로실험 실험4-1 교류회로의 측정 예비보고서2025.01.171. 교류의 표현 교류는 시간에 따라 흐르는 전류의 방향과 크기가 바뀌는 경우를 지칭하며, 대부분 사인파 형태로 주기적으로 생성된다. 교류전압은 시간에 따라 방향과 크기가 바뀌는 전압이며, 교류회로 내의 소자를 지나갈 때 소자 전후의 전위차가 교류전압이 된다. 2. 교류에서의 전압과 전류 교류전압과 전류는 시간에 따라 변하며, 저항, 인덕터, 커패시터에 교류가 인가되었을 때 전압과 전류 사이의 관계가 소자마다 다르다. 저항의 경우 전압과 전류가 항상 직접 비례하지만, 인덕터와 커패시터의 경우 전압과 전류 사이에 위상차가 존재한다. ...2025.01.17