총 17개
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.161. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 한 가지 특정 작업을 수행하는 것을 목표로 하는 인공지능이며, 강한 인공지능은 인간의 지능과 비슷한 기능을 하는 것을 목표로 한다. 약한 인공지능은 미리 정해진 데이터와 알고리즘을 통해 최적의 결과를 만들어내는 것이 목표이지만, 강한 인공지능은 다양한 기능을 수행하고 새로운 문제를 해결하는 방법을 직접 찾는 것을 목표로 한다. 2. 기계학습의 특징 기계학습은 인공지능을 구현하는 방법 중 하나로, 빅데이터를 반복적으로 분석하여 데이터 내부의 규칙성과 패턴을 추출하고 이를 바탕...2025.05.16
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.151. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능(AI)은 특정 작업을 수행하도록 설계된 인공지능으로, 사람처럼 사고하거나 인식하는 능력은 없다. 반면, 강한 인공지능은 인간과 유사한 사고, 이해, 학습 능력을 갖춘 인공지능을 말한다. 강한 AI는 현재 기술로는 아직 실현되지 않았으며, 과학 소설이나 미래 기술에 대한 논의에서 주로 다루어진다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 데이터를 통해 스스로 학습하고, 패턴을 인식하여 의사결정을 개선할 수 있는 능력을 갖추게 하는 기술분야이다. 기계학습의 가장 큰 특징은...2025.01.15
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.041. 약한 인공지능과 강한 인공지능 약한 인공지능은 특정한 영역의 문제를 푸는 인공지능 기술로, 문제를 해결하거나 이상적인 업무 연구를 처리하는 데에 널리 사용된다. 약한 인공지능은 기초 데이터나 알고리즘, 규칙 등을 입력해야 한다. 약한 인공지능은 인간이 가지고 있는 인지적인 능력 중에서 한정적인 부분만 사고할 수 있다는 것이 한계이다. 강한 인공지능은 인간의 지능을 바탕으로 생각을 할 수 있는 컴퓨터이다. 강한 인공지능은 명령이 입력되지 않아도 스스로 학습을 할 수 있으며, 인공지능 스스로 보았을 때 지시 사항이 비합리적이라고 ...2025.05.04
-
증강현실을 활용한 실감 나는 재난 훈련2025.01.041. 증강현실 증강현실은 실제 존재하는 환경에 가상의 사물, 정보를 합성해 마치 실제 환경에 가상의 사물이나 현상이 존재하는 것처럼 보이도록 하는 컴퓨터 그래픽의 기법이다. 증강현실은 현실 세계를 기반으로 하기 때문에 주로 현실 세계의 부족을 보완하기 위한 목적에서 활용된다. 증강현실은 게임, 설계와 제품 개발, 직원 교육, 소비자 경험 등 다양한 산업 분야에 활용되고 있다. 2. 재난 대응 훈련 최근 재난 상황에 대한 시민들의 경각심이 낮아지고 있는 상황에서 증강현실을 활용한 실감 나는 재난 훈련이 필요하다. 증강현실을 통해 시민...2025.01.04
-
리벳이음의 강도 및 효율의 방법에 대하여 자유롭게 토론하시오2025.01.111. 리벳이음의 개념과 중요성 리벳이음은 코퍼레이트 파이낸스 분야에서 중요한 개념으로, 기업의 재무 거래에서 발생하는 다양한 비용을 최소화하고 이익을 극대화하는 데 큰 역할을 한다. 또한, 리벳이음은 기업의 재무 거래에서 발생하는 리스크를 관리하는 데도 중요하다. 리벳이음은 기업의 재무 거래에서 필수적인 개념이며, 이를 효과적으로 관리함으로써 기업의 이익을 극대화할 수 있다. 2. 리벳이음의 강도 측정 방법 리벳이음의 강도 측정 방법에는 잉크판 테스트, 굽힘 시험, 인장 시험이 있다. 이 중에서도 굽힘 시험과 인장 시험은 가장 일반...2025.01.11
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.181. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 단순히 인간의 능력 일부를 시뮬레이션하는 것으로, 특정 분야에 한정해 인간의 지능을 흉내 내는 지능적인 활동을 의미한다. 반면 강한 인공지능은 자신만의 자아를 가지고 있는 컴퓨터로, 인간과 유사하거나 뛰어넘는 수준의 능력을 가지고 있어 스스로 학습하고 자아의식과 감정도 가진다. 2. 기계학습의 개념과 특징 기계학습은 데이터로부터 프로그램을 자동으로 생성하는 기술로, 사람이 학습하듯이 컴퓨터에 데이터를 입력해 놓고 학습하게 함으로써 새로운 지식을 얻어내게 하는 분야이다. 기계...2025.01.18
-
인공지능(AI) 적용 사례 분석 - 현황, 사례, 영향도, 미래2025.01.231. 인공지능(AI) 발전 현황 2024년 현재, 인공지능(AI)은 기술적 성숙기에 접어들면서, 단순한 이론적 연구에서 다양한 실제 응용으로 빠르게 확장되고 있습니다. 초기에 AI는 데이터 처리와 자동화된 작업 수행에 주로 사용되었으나, 최근에는 생성형 AI 기술이 눈부신 성장을 이루어냈습니다. 대표적인 예로 <ChatGPT>와 <DALL-E>와 같은 모델은 대규모 자연어 처리와 이미지 생성에서 큰 발전을 보였으며, 이를 통해 콘텐츠 제작과 업무 생산성 향상에 실질적인 기여를 하고 있습니다. 2. AI 기술의 발전 단계 첫 단계로는...2025.01.23
-
인공지능의 개념과 기술 그리고 활용 사례에 대해 조사2025.05.141. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 특정한 문제를 해결하는 것을 목적으로 하는 지능적 행동을 말하며, 사용자가 입력한 데이터를 기반으로 질문에 응하는 등의 특정 작업을 수행한다. 반대로 강한 인공지능은 사람 같은 지능을 가지고 있는 인공 지능으로, 추론과 문제해결, 판단과 의사소통, 자아와 감정, 양심과 지혜의 영역까지 확장한 개념이다. 2. 기계학습의 개념과 특징 기계학습은 인공지능의 한 분야로, 컴퓨터 시스템이 데이터를 자동으로 학습하고 그 패턴을 인지하여 변수에 대한 예측, 분류, 결정 등의 작업을 수행...2025.05.14
-
RFID 기술의 개념, 문제점, 국내외 사례 및 도입 전후 효과2025.05.081. RFID 기술의 개념 RFID(Radio Frequency Identification) 기술은 물리적인 라벨 또는 태그를 활용하여 무선 통신을 통해 자동적으로 데이터를 인식하는 혁신적인 기술입니다. RFID 시스템은 태그, 리더기, 데이터베이스로 구성되어 있으며, 태그에 저장된 식별 정보를 리더기가 읽어 데이터베이스에 저장하는 방식으로 작동합니다. 2. RFID 기술의 문제점 RFID 기술에는 개인정보 보호 문제와 RFID 태그의 가격 문제가 있습니다. 개인정보 보호를 위해 태그에 저장되는 정보는 암호화되어야 하고, 액세스 제...2025.05.08