총 8개
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.151. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능(AI)은 특정 작업을 수행하도록 설계된 인공지능으로, 사람처럼 사고하거나 인식하는 능력은 없다. 반면, 강한 인공지능은 인간과 유사한 사고, 이해, 학습 능력을 갖춘 인공지능을 말한다. 강한 AI는 현재 기술로는 아직 실현되지 않았으며, 과학 소설이나 미래 기술에 대한 논의에서 주로 다루어진다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터가 데이터를 통해 스스로 학습하고, 패턴을 인식하여 의사결정을 개선할 수 있는 능력을 갖추게 하는 기술분야이다. 기계학습의 가장 큰 특징은...2025.01.15
-
증강현실을 활용한 실감 나는 재난 훈련2025.01.041. 증강현실 증강현실은 실제 존재하는 환경에 가상의 사물, 정보를 합성해 마치 실제 환경에 가상의 사물이나 현상이 존재하는 것처럼 보이도록 하는 컴퓨터 그래픽의 기법이다. 증강현실은 현실 세계를 기반으로 하기 때문에 주로 현실 세계의 부족을 보완하기 위한 목적에서 활용된다. 증강현실은 게임, 설계와 제품 개발, 직원 교육, 소비자 경험 등 다양한 산업 분야에 활용되고 있다. 2. 재난 대응 훈련 최근 재난 상황에 대한 시민들의 경각심이 낮아지고 있는 상황에서 증강현실을 활용한 실감 나는 재난 훈련이 필요하다. 증강현실을 통해 시민...2025.01.04
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.181. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 단순히 인간의 능력 일부를 시뮬레이션하는 것으로, 특정 분야에 한정해 인간의 지능을 흉내 내는 지능적인 활동을 의미한다. 반면 강한 인공지능은 자신만의 자아를 가지고 있는 컴퓨터로, 인간과 유사하거나 뛰어넘는 수준의 능력을 가지고 있어 스스로 학습하고 자아의식과 감정도 가진다. 2. 기계학습의 개념과 특징 기계학습은 데이터로부터 프로그램을 자동으로 생성하는 기술로, 사람이 학습하듯이 컴퓨터에 데이터를 입력해 놓고 학습하게 함으로써 새로운 지식을 얻어내게 하는 분야이다. 기계...2025.01.18
-
인공지능(AI) 적용 사례 분석 - 현황, 사례, 영향도, 미래2025.01.231. 인공지능(AI) 발전 현황 2024년 현재, 인공지능(AI)은 기술적 성숙기에 접어들면서, 단순한 이론적 연구에서 다양한 실제 응용으로 빠르게 확장되고 있습니다. 초기에 AI는 데이터 처리와 자동화된 작업 수행에 주로 사용되었으나, 최근에는 생성형 AI 기술이 눈부신 성장을 이루어냈습니다. 대표적인 예로 <ChatGPT>와 <DALL-E>와 같은 모델은 대규모 자연어 처리와 이미지 생성에서 큰 발전을 보였으며, 이를 통해 콘텐츠 제작과 업무 생산성 향상에 실질적인 기여를 하고 있습니다. 2. AI 기술의 발전 단계 첫 단계로는...2025.01.23
-
리벳이음의 강도 및 효율의 방법에 대하여 자유롭게 토론하시오2025.01.111. 리벳이음의 개념과 중요성 리벳이음은 코퍼레이트 파이낸스 분야에서 중요한 개념으로, 기업의 재무 거래에서 발생하는 다양한 비용을 최소화하고 이익을 극대화하는 데 큰 역할을 한다. 또한, 리벳이음은 기업의 재무 거래에서 발생하는 리스크를 관리하는 데도 중요하다. 리벳이음은 기업의 재무 거래에서 필수적인 개념이며, 이를 효과적으로 관리함으로써 기업의 이익을 극대화할 수 있다. 2. 리벳이음의 강도 측정 방법 리벳이음의 강도 측정 방법에는 잉크판 테스트, 굽힘 시험, 인장 시험이 있다. 이 중에서도 굽힘 시험과 인장 시험은 가장 일반...2025.01.11
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 역사 인공지능(Artificial Intelligence, AI)은 기계가 인간과 유사하게 정보를 처리하고, 복잡한 문제를 해결할 수 있는 능력을 부여하는 과학기술 분야입니다. 1950년대에 공식적으로 탄생한 이 분야는 앨런 튜링의 '튜링 테스트'를 시작으로 다양한 학문적, 산업적 발전을 거쳐 현재에 이르고 있습니다. 초기 단계에서는 논리 추론과 규칙 기반 시스템이 주를 이루었으나, 컴퓨터 하드웨어의 발전과 데이터 처리 능력의 증가로 인해 현재에는 기계학습, 딥러닝 등이 주된 연구 분야로 자리 잡고 있습니다....2025.01.18
-
2024년 김영평생육원 경영정보시스템 전체 1등 A+의 만점 받은 과제 _인공지능의 개념과 기술, 활용사례에 대해 조사하시오2025.01.211. 인공지능의 개념 인공지능은 '지능을 기계로 구현한 것'이다. 지능은 문제를 해결할 수 있는 능력으로 정의될 수 있다. 따라서 인공지능은 문제를 해결하기 위해서 스스로 작업을 진행할 수 있는 능력으로 정의할 수 있다. 학계에서 바라보는 인공지능의 진화 단계는 크게 ANI, AGI, ASI 세 가지로 나누어 설명할 수 있다. 2. 인공지능 기술: 기계학습과 딥러닝 인공지능은 컴퓨터에게 데이터를 학습시켜 마치 사람처럼 스스로 의사결정을 할 수 있게 한다. 기계학습은 사람이 특성인자를 선정하는 것이 중요하지만, 딥러닝은 데이터에서 모...2025.01.21
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22