
총 87개
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 및 전략적 배치2025.01.171. 수요 예측 방법론 수요 예측을 위해 시계열 분석과 머신 러닝 알고리즘을 활용할 수 있다. 시계열 분석은 과거 패턴을 바탕으로 미래를 예측하는 방법이며, 머신 러닝은 복잡한 데이터에서 패턴을 학습하여 예측하는 방법이다. 각각의 장단점이 있으므로, 상황에 따라 적절한 방법을 선택해야 한다. 2. 필요한 데이터 유형 및 수집 방법 수요 예측을 위해 필요한 데이터에는 이용 기록 데이터, 고객 프로필 데이터, 외부 환경 데이터가 있다. 이용 기록 데이터는 서비스 애플리케이션에서, 고객 프로필 데이터는 데이터베이스에서, 외부 환경 데이터...2025.01.17
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
사물인터넷과 빅데이터의 관계 및 기회와 위협요인2025.01.211. 사물인터넷과 빅데이터의 관계 사물인터넷 환경에서는 대량의 센서데이터가 발생하게 되며, 이를 분석하기 위해 머신러닝 기술이 중요해지고 있다. 사물인터넷에서 발생하는 대량의 데이터를 분석하여 유의미한 정보를 도출하고 미래를 예측하는 것이 빅데이터의 역할이다. 2. 사물인터넷과 빅데이터 활용 사례 코카콜라의 프리스타일 음료 자판기와 디컨스트럭션의 공사현장 관리 시스템 등 사물인터넷 기술과 빅데이터 분석을 활용한 사례를 소개하였다. 이를 통해 실시간 관리와 고객 맞춤형 서비스 제공 등의 효과를 얻을 수 있다. 3. 사물인터넷 시대의 ...2025.01.21
-
인공지능의 개념과 기술 그리고 활용사례2025.01.021. 인공지능의 개념 인공지능은 기계가 인간의 지능을 모방하거나 구현하는 기술을 의미합니다. 이는 문제 해결, 학습, 추론, 자연어 이해 등의 인간의 지능적인 능력을 컴퓨터 프로그램이나 기계가 수행할 수 있도록 하는 분야를 포함합니다. 강한 인공지능은 인간과 동등한 지능을 가진 인공 시스템을 의미하며, 약한 인공지능은 특정한 작업이나 문제 해결에 특화된 인공 시스템을 의미합니다. 2. 인공지능의 주요 기술 인공지능의 주요 기술에는 머신러닝, 딥러닝, 자연어 처리가 있습니다. 머신러닝은 데이터에서 학습하고 패턴을 인식하여 결정을 내리...2025.01.02
-
베이지안 네트워크 이용해서 잔디가 젖어있는 원인 추정하기2025.01.171. 베이지안 네트워크 베이지안 네트워크는 확률적 모델을 기반으로 사건 간의 의존 관계를 표현하는 도구입니다. 이를 통해 복잡한 문제를 구조적으로 분석하고 예측할 수 있습니다. 이 예제에서는 베이지안 네트워크를 사용하여 비가 오는지, 스프링클러가 작동하는지, 그리고 잔디가 젖는지에 대한 관계를 모델링하고 있습니다. 2. 조건부 확률 베이지안 네트워크에서는 각 변수 간의 의존 관계를 나타내기 위해 조건부 확률 분포를 사용합니다. 이를 통해 주어진 조건하에서 특정 사건이 발생할 확률을 계산할 수 있습니다. 이 예제에서는 비의 발생 확률...2025.01.17
-
경영정보시스템: AWS를 방문하고, 이 회사의 모든 클라우드 컴퓨팅 활동들을 조사하고 요약하시오2025.01.131. 아마존 클라우드의 주요 서비스 종류 및 기능 AWS는 다양한 클라우드 컴퓨팅 서비스를 제공하고 있다. 컴퓨팅 서비스로는 Amazon EC2, Amazon Lightsail, AWS Lambda 등이 있으며, 스토리지 서비스로는 Amazon S3, Amazon EBS, Amazon EFS 등이 있다. 데이터베이스 서비스로는 Amazon Aurora, Amazon DynamoDB, Amazon Redshift 등이 있다. 이러한 다양한 서비스를 통해 사용자는 필요한 클라우드 자원을 유연하게 활용할 수 있다. 2. 미래의 클라우드 ...2025.01.13
-
파이썬프로그래밍 - 파이썬의 개념과 특징을 정의하고, 파이썬으로 할 수 있는 일 3가지를 실제 사례를 들어 작성하시오.2025.01.161. 파이썬의 개념과 특징 파이썬은 1991년 귀도 반 로섬(Guido van Rossum)에 의해 개발된 고급 프로그래밍 언어입니다. 파이썬은 읽기 쉬운 문법과 동적 타이핑(dynamic typing), 인터프리터(interpreter) 방식의 언어로 잘 알려져 있습니다. 또한 객체 지향 프로그래밍(Object-Oriented Programming)과 함수형 프로그래밍(Functional Programming)을 지원합니다. 파이썬의 주요 특징으로는 간결하고 읽기 쉬운 문법, 광범위한 표준 라이브러리, 플랫폼 독립성, 동적 타이핑...2025.01.16
-
amazon.com의 클라우드 컴퓨팅 활동 요약2025.01.271. 인프라 서비스 EC2: 가상 서버 생성 및 관리 기능 제공, 다양한 인스턴스 유형 지원 S3: 객체 저장소 서비스, 데이터 백업, 아카이빙, 분석 등에 활용 가능 2. 데이터베이스 서비스 RDS: 관계형 데이터베이스 관리 시스템 설정 및 관리 지원, 자동 백업, 소프트웨어 패치, 복원 등 제공 DynamoDB: 완전 관리형 NoSQL 데이터베이스, 빠른 응답 속도와 무제한 확장성 제공 3. AI 및 머신러닝 SageMaker: 머신러닝 모델 구축, 훈련 및 배포를 위한 통합 개발 환경 Rekognition: 이미지와 비디오 분...2025.01.27
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
건국대학교 오픈소스SW프로젝트 1 머신러닝으로 해결할 수 있는 문제, 머신러닝의 세가지 요소2025.01.191. 머신러닝을 적용할 수 있는 문제 사용자의 음식 기호에 맞는 한식 추천 문제를 해결하기 위해 비지도학습의 분류를 사용할 수 있으며, 서포트벡터 머신 모델을 고려하고 있다. 또한 사용자에게 세 가지 정도의 한식을 추천하는 것을 목표로 하고 있다. 2. 머신러닝의 3가지 요소 머신러닝의 핵심 요소는 Task, Experience, Performance measure이다. Task는 머신러닝을 통해 해결하려는 문제, Experience는 실제 데이터를 바탕으로 한 학습, Performance measure는 학습을 바탕으로 생성된 모...2025.01.19