
총 87개
-
[경영정보시스템] 4차 산업혁명과 관련된 정보기술인 빅데이터에 대한 개념과 특성, 빅데이터를 활용한 기술을 조사하고, 기업에서 빅데이터를 어떻게 활용하고 있는지를 서술하시오. 또한 빅데이터 기술로 인해 발생할 문제점을 예측하고 이에 개인과 기업이 각각 어떻게 대응할 수 있을지를 서술하세요.2025.01.231. 빅데이터의 개념과 특성 빅데이터는 전통적인 데이터 처리 방식으로는 감당하기 어려운 방대한 양의 데이터 집합을 의미한다. 이러한 데이터는 양(Volume), 속도(Velocity), 다양성(Variety), 정확성(Veracity), 가치(Value)의 5가지 특성을 가지고 있으며, 이를 효율적으로 처리하고 분석하여 유의미한 정보를 도출하는 것이 빅데이터 기술의 핵심이다. 빅데이터는 기업의 의사결정에 필요한 근거를 제공하고, 새로운 비즈니스 기회를 발굴하며, 고객의 행동을 예측하는 등 다양한 활용 가능성을 가지고 있다. 2. 빅...2025.01.23
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26
-
비즈니스 애널리틱스 관련 용어 설명2025.01.261. 데이터 과학 데이터 과학(Data Science)은 데이터를 통해 새로운 인사이트를 발견하고, 복잡한 문제를 해결하는 학문 분야입니다. 데이터 과학은 통계학, 컴퓨터 과학, 수학 등을 융합하여 데이터를 분석하고, 이를 기반으로 의사결정을 지원하는 학문적 기초를 제공합니다. 데이터 과학자는 데이터를 수집, 처리, 분석하여 유의미한 결과를 도출하며, 이를 통해 비즈니스 문제를 해결하거나 새로운 기회를 창출합니다. 2. 데이터 애널리틱스 데이터 애널리틱스(Data Analytics)는 데이터를 분석하여 과거의 패턴을 파악하고, 현재...2025.01.26
-
[글로벌 비즈니스 애널리틱스] 비즈니스 애널리틱스의 역사와 정의, 관련 용어 설명2025.01.261. 비즈니스 애널리틱스의 역사 비즈니스 애널리틱스는 20세기 후반부터 본격적으로 발전하기 시작했다. 1960년대와 70년대에는 데이터 처리 기술의 발전이 주로 통계적 분석과 의사결정 지원 시스템(DSS)에 중점을 두고 있었다. 1990년대에는 데이터베이스 관리 시스템(DBMS)과 데이터 마이닝 기법이 등장하면서 보다 복잡한 데이터 분석이 가능해졌다. 2000년대 들어서는 빅데이터와 클라우드 컴퓨팅의 등장으로 인해 데이터 수집과 저장, 분석이 용이해지면서 비즈니스 애널리틱스가 더욱 발전하였다. 2. 비즈니스 애널리틱스의 정의 비즈니...2025.01.26
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
비즈니스 애널리틱스와 관련 기술의 정의 및 역사2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 기업의 의사 결정을 지원하기 위해 데이터를 분석하여 통찰력을 도출하고 이를 기반으로 전략을 수립하는 과정입니다. 비즈니스 애널리틱스는 20세기 중반 컴퓨터 기술의 발전과 함께 시작되었으며, 통계 기법, 데이터 마이닝, 예측 모델링, 인공지능 등을 활용하여 비즈니스 성과를 개선하는 것을 목표로 합니다. 2. 데이터 과학 데이터 과학은 다양한 형태의 데이터를 분석하고 의미 있는 정보를 추출하는 학문적 분야입니다. 통계학, 수학, 컴퓨터 과학 등을 기반으로 하며, 데이터 처리, 분석, 예측 ...2025.01.26
-
비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 빅데이터를 활용함에 있어서 비즈니스의 혁신을 추구하는 개념이다. 현재 미국에서는 기존 애널리틱스 기법에 빅데이터 기술을 접목시켜 정확한 정보를 제공함에 있어서 신속한 의사결정을 가능하게 하는 애널리틱스가 확산되고 있는 상황이다. 비즈니스 애널리틱스는 전세계적으로 가장 빠르게 성장하는 첨단 정보기술이며, 기업은 데이터를 기반으로 전략을 수립하고 예측 분석을 통한 미래의 트렌드를 예측하면서 실시간 데이터 분석을 통해 즉각적인 결정을 내릴 수 있어야 한다. 2. 데이터 과학 데이터 과학은 빅...2025.01.26
-
영화 '머니볼'을 통해 본 일상생활에서의 통계학 적용2025.01.041. 통계학 통계학은 다양한 분야에서 활용되며, 기상예측, 선거 분석, 기업의 의사결정 등에 활용된다. 통계학은 수학적 분석을 통해 현상을 객관적으로 이해하고 예측할 수 있게 해준다. 또한 데이터 분석을 통해 소비자 니즈를 파악하고 만족도를 높이는 데 기여한다. 2. 일상 생활 속 통계학 적용 일상생활에서 통계학은 의견의 대표성 판단, 6시그마 기법을 통한 품질 관리, 빅데이터 분석 등에 활용된다. 통계학 지식을 바탕으로 데이터를 분석하면 일상에서 접하는 정보를 다양한 관점에서 해석할 수 있다. 통계학은 4차 산업혁명 시대의 데이터...2025.01.04
-
머신러닝과 수율 영향인자 분석하기2025.05.101. 수율 영향 요소 제조 과정에서 수율에 영향을 미치는 주요 요소로는 원자재 품질, 공정 설계 및 제어, 장비 및 기술, 작업자의 기술과 교육, 품질 관리 시스템, 환경 조건 등이 있습니다. 이러한 요소들은 제조 산업의 특성과 제품에 따라 다를 수 있지만, 일반적으로 수율 향상을 위해서는 이러한 요소들을 관리하고 최적화하는 것이 중요합니다. 2. 머신러닝을 활용한 수율 영향성 분석 머신러닝을 활용하여 수율 영향성을 분석하기 위해서는 데이터 수집, 전처리, 특성 선택 및 추출, 모델 구축, 학습 및 평가, 결과 해석 등의 단계를 거...2025.05.10
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10