
총 87개
-
기업의 경영활동에서 발생한 문제를 해결하기 위한 노력2025.05.041. 기업의 빅데이터 활용 비즈니스 환경의 변화에 따라 정보시스템의 필요성이 대두되면서 기업들은 정보를 경영의 필수 요소로 판단하고 있다. 이에 따라 정보를 처리할 수 있는 시스템인 '빅데이터'가 발전하게 되었다. 금융권에서는 빅데이터 기반 머신러닝을 이용하여 이상금융거래를 사전에 탐지하고 방지하고 있으며, 신한은행은 SACP(Shinhan AI Core Platform)에 머신러닝 자기학습 프로세스를 도입하여 모형 재개발 비용과 시간을 절감하고 신용평가 모형을 지속적으로 최신화하여 신속한 대응력을 갖추게 되었다. 이처럼 빅데이터는...2025.05.04
-
4차 산업혁명과 알고리즘(수학)2025.01.171. 4차 산업혁명 최근 인공지능 분야에 놀라운 성과가 나타나면서 인공지능은 미래의 일이 아니라 현실이 되고 있다. 그것은 빅데이터의 출현과 기계 스스로가 학습할 수 있는 '딥러닝(deep learning)'이라는 알고리즘의 개발 덕분이다. 알고리즘은 제 4차 산업혁명의 기초 작업으로 작용하고 있으며, 알고리즘을 안다는 것은 제 4차 산업혁명에 관한 이해도를 높이는 데 도움이 될 것이다. 2. 알고리즘 알고리즘이란 컴퓨터에서 쓰이는 용어로 어떤 문제의 해결을 위하여, 입력된 자료를 토대로 하여 원하는 출력을 유도하여 내는 규칙의 집...2025.01.17
-
파이썬프로그래밍 - 파이썬의 개념과 특징을 정의하고, 파이썬으로 할 수 있는 일 3가지를 실제 사례를 들어 작성하시오.2025.01.161. 파이썬의 개념과 특징 파이썬은 1991년 귀도 반 로섬(Guido van Rossum)에 의해 개발된 고급 프로그래밍 언어입니다. 파이썬은 읽기 쉬운 문법과 동적 타이핑(dynamic typing), 인터프리터(interpreter) 방식의 언어로 잘 알려져 있습니다. 또한 객체 지향 프로그래밍(Object-Oriented Programming)과 함수형 프로그래밍(Functional Programming)을 지원합니다. 파이썬의 주요 특징으로는 간결하고 읽기 쉬운 문법, 광범위한 표준 라이브러리, 플랫폼 독립성, 동적 타이핑...2025.01.16
-
미래사회와 소프트웨어 과제 012025.01.291. GPU(Graphic Processing Unit) GPU는 컴퓨터에 들어있는 부품 중 하나로, 주로 그래픽 렌더링 작업을 수행하는 데 사용되지만 최근에는 과학 계산, 인공지능, 데이터 분석 등 다양한 용도로 활용되고 있다. GPU는 CPU와 달리 많은 연산을 병렬적으로 처리할 수 있는 강점이 있어 그래픽 및 영상처리, 인공지능, 머신러닝, 데이터 분석, 과학적 시뮬레이션 등의 작업에 유용하게 사용된다. 또한 GPU는 암호화폐 채굴 과정에서 중요한 역할을 하며, 머신러닝과 딥러닝에도 활용된다. 2. CPU와 GPU의 차이 CP...2025.01.29
-
사물인터넷과 빅데이터의 관계 및 기회와 위협요인2025.01.211. 사물인터넷과 빅데이터의 관계 사물인터넷 환경에서는 대량의 센서데이터가 발생하게 되며, 이를 분석하기 위해 머신러닝 기술이 중요해지고 있다. 사물인터넷에서 발생하는 대량의 데이터를 분석하여 유의미한 정보를 도출하고 미래를 예측하는 것이 빅데이터의 역할이다. 2. 사물인터넷과 빅데이터 활용 사례 코카콜라의 프리스타일 음료 자판기와 디컨스트럭션의 공사현장 관리 시스템 등 사물인터넷 기술과 빅데이터 분석을 활용한 사례를 소개하였다. 이를 통해 실시간 관리와 고객 맞춤형 서비스 제공 등의 효과를 얻을 수 있다. 3. 사물인터넷 시대의 ...2025.01.21
-
인과관계의 개념과 증명을 위한 세 가지 조건2025.05.031. 인과관계의 개념 인과관계는 어떤 사건이 다른 사건에 영향을 미치는 관계를 의미합니다. 즉, 한 사건이 다른 사건의 원인이 되는 관계를 말합니다. 인과관계는 시간적 선후관계, 논리적 관계, 다양한 요인의 영향을 받는 특징을 가지고 있습니다. 인과관계를 파악하는 것은 다양한 분야에서 중요한 의사결정을 내리는 데 도움이 됩니다. 2. 인과관계 증명을 위한 세 가지 조건 첫째, 두 사건 간에 상관관계가 존재해야 합니다. 둘째, 원인이 결과보다 먼저 발생해야 합니다. 셋째, 인과관계를 제외한 다른 요인의 영향을 제어해야 합니다. 이를 ...2025.05.03
-
머신 러닝 학습을 위한 데이터 증량하기2025.05.081. 데이터 증강 데이터 증강(Data Augmentation)은 현대 머신러닝과 딥러닝 분야에서 핵심 개념이 되었습니다. 데이터의 양과 질은 모델의 성능과 일반화 능력에 큰 영향을 미치지만, 현실적인 제약으로 인해 충분한 양의 고품질 데이터를 수집하기 어려운 문제를 해결하기 위해 데이터 증강이 등장하였습니다. 데이터 증강은 기존의 데이터를 변형하여 새로운 데이터를 생성하는 과정으로, 모델의 학습과 예측 능력을 향상시킬 수 있습니다. 2. 데이터 증강 기법 다양한 데이터 증강 기법이 개발되어 있으며, 이를 통해 다양한 유형의 데이터...2025.05.08
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
성균관대 디지털플랫폼경영(Platform Business in Digital Economy) 교안 요약2025.01.201. 플랫폼 비즈니스 플랫폼은 외부 생산자와 소비자 간의 가치 창출 상호작용을 가능하게 하는 것으로, 다양한 선택, 검색, 시간 절약, 리뷰를 통한 정보 제공 등의 기능을 제공하여 비선형적인 효용과 가치 증대를 가져온다. 플랫폼의 주요 역할은 사용자 유치, 매칭, 거래 촉진이며, 이를 통해 네트워크 효과와 자체 가치를 창출한다. 2. 플랫폼 유형 플랫폼은 거래 플랫폼과 혁신 플랫폼으로 구분된다. 거래 플랫폼은 사용자 간 직접 거래를 중개하며, 혁신 플랫폼은 보완재 개발을 촉진한다. 플랫폼의 성공을 위해서는 적절한 시기 진입, 교차 ...2025.01.20