총 35개
-
중앙대학교 아날로그및디지털회로설계실습 9차 예비보고서2025.01.061. 전가산기 설계 전가산기는 입력 A, B와 이전 연산의 carry bit Cin을 더하여 생긴 합 S와 그때 발생한 carry bit Cout을 출력한다. Karnaugh 맵을 이용하여 간소화된 Sum of product 또는 Product of sum 형태의 불리언 식을 구하고, 2-level AND-OR(NAND-NAND) 또는 OR-AND(NOR-NOR) 로직 회로를 설계하였다. 또한 XOR gate를 이용하여 보다 간소화된 다단계 조합 논리 회로를 설계하였다. 2. 2-Bit 가산기 회로 설계 2-Bit 가산기는 두 개의...2025.01.06
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 예비 보고서2025.01.041. 초전형 적외선 센서 초전형 적외선 센서는 인체의 움직임을 감지하여 전압 변화를 발생시킵니다. 이 센서는 침입자 경보기와 자동 도어 센서 등에 사용되며, 접촉식 초전형 적외선 센서를 이용한 스크린 등의 다양한 터치 제품에도 활용되고 있습니다. 2. High-Pass Filter 설계 초전형 적외선 센서와 증폭기 사이에 신호를 전달하는 High-Pass Filter를 저항과 커패시터를 이용하여 설계하였습니다. High-Pass Filter는 저주파 영역의 신호를 차단하고 고주파 영역의 신호만 전달하는 필터입니다. 전달함수를 통해 ...2025.01.04
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 예비 보고서2025.01.041. PWM 제어 회로 PWM(Pulse Width Modulation) 제어회로는 출력 전압의 오차분만큼 펄스폭을 조정하여 출력 전압을 안정화 시키는 회로입니다. 출력 전압과 기준 전압을 비교한 오차를 검출하여 증폭하는 오차 증폭기(Error Amp)와 검출된 오차 전압과 톱니파를 비교하여 구형파 펄스를 발생시키는 비교기(Comparator) 그리고 출력 전압을 안정화시키는 Converter의 스위치를 구동하는 구동회로(Driver stage) 등으로 구성되어 있습니다. 2. Buck Converter Buck Converter는...2025.01.04
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 예비 보고서2025.01.041. Wien bridge RC 발진기 Wien bridge RC 발진기는 아날로그 및 디지털 회로 설계에서 널리 사용되는 신호 발생기입니다. 이 실습에서는 Wien bridge RC 발진기를 설계하고 제작하여 동작을 확인하였습니다. 발진 주파수 1.63 kHz에서 발진하도록 회로를 설계하였고, 시뮬레이션을 통해 출력 파형과 FFT 분석을 수행하였습니다. 또한 다이오드를 이용하여 출력 신호를 안정화하는 방법을 제시하였습니다. 1. Wien bridge RC 발진기 Wien bridge RC 발진기는 안정적이고 신뢰성 있는 발진기로,...2025.01.04
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 11차 예비보고서2025.01.041. 비동기식 4진 카운터 비동기식 4진 카운터에 1MHz의 구형파를 인가했을 때, Q1 신호의 주파수는 0.5MHz, Q2 신호의 주파수는 0.25MHz로 나타났습니다. 이를 통해 Q1은 2분주 회로, Q2는 4분주 회로로 사용할 수 있음을 확인했습니다. 2. 8진 비동기 카운터 설계 74HC73 칩 3개를 연결하여 8진 비동기 카운터를 설계했습니다. 버튼 입력에 따라 (Q3, Q2, Q1)의 상태가 000 -> 001 -> ... -> 111로 반복되는 것을 확인했습니다. 3. 10진 비동기 카운터 설계 16진 비동기 카운터와 ...2025.01.04
-
회로이론및실험1 16장 미분기와 적분기 회로 A+ 예비보고서2025.01.131. 적분기 회로 적분기 회로는 커패시터와 연산증폭기의 성질을 이용하여 구성할 수 있다. 입력신호를 적분하여 출력신호로 나타내며, 저주파 이득을 제한하기 위해 저항 Rs를 병렬로 연결한다. 시상수 RC는 입력신호의 주기와 비슷한 값으로 결정한다. 2. 미분기 회로 미분기 회로는 적분기와 유사하게 커패시터와 연산증폭기의 성질을 이용하여 구성할 수 있다. 입력신호를 미분하여 출력신호로 나타내며, 고주파 이득이 커지는 문제를 해결하기 위해 입력신호와 커패시터 사이에 Rs를 연결한다. 3. RC 적분기 특성 RC 적분기에 구형파가 입력되면...2025.01.13
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 결과 보고서2025.01.041. Wien bridge oscillator 구현 이번 실험실습에서는 신호발생기를 소자의 값을 조절하여 원하는 주파수에서 발진시키고, 이때의 발진주파수와 출력파형의 최대치를 관찰하였습니다. 그 결과 4-4-2의 회로의 경우 출력파형이 완벽한 사인파가 아니었지만, Gain 값과 발진주파수 모두 설계값과 비슷하였고, 4-4-3의 회로의 경우 4-4-2의 회로에서 다이오드를 추가하여 왜곡이 감소하는 것을 관찰할 수 있었습니다. Gain 값과 발진주파수 모두 설계값과의 오차가 감소하였습니다. 2. 안정된 Wien bridge oscill...2025.01.04
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 5차 예비보고서2025.01.041. 전압제어 발진기(VCO) 전압제어 발진기(VCO)를 설계하고 전압을 이용한 발진 주파수의 제어를 실험으로 확인하였습니다. 슈미트 회로와 적분기 회로를 결합하여 VCO를 구현하였으며, 입력 전압 VC에 따른 출력 주파수 f의 변화를 관찰하였습니다. 시뮬레이션 결과, VC가 증가함에 따라 f도 증가하는 경향을 보였으며, 고주파 영역에서는 비선형적으로 증가하는 것을 확인하였습니다. 또한 슈미트 회로의 저항비와 커패시터 값을 변화시키면서 출력 파형을 관찰하였습니다. 1. 전압제어 발진기(VCO) 전압제어 발진기(VCO)는 전자 회로 ...2025.01.04
-
아날로그 및 디지털 회로 설계실습 결과보고서112025.01.171. 비동기 8진 카운터 설계 비동기 8진 카운터 회로를 구현하고 LED 연결, 버튼 스위치 연결, chattering 방지 회로 추가 등의 과정을 거쳐 카운터의 정상 동작을 확인하였다. chattering 방지 회로를 거치지 않고 바로 회로에 연결하였을 때 출력이 순간 불안정한 것을 확인하였다. 2. 비동기 및 동기 16진 카운터 설계 16진 비동기 카운터와 16진 동기 카운터를 각각 구현하고, Function generator를 사용하여 1Hz의 Square wave를 입력하여 동작을 확인하였다. 동기 카운터의 경우 매 순간 동...2025.01.17
-
아날로그 및 디지털 회로 설계실습 예비보고서 12주차2025.01.171. 4진 비동기 카운터 4진 비동기 카운터의 이론을 바탕으로 1MHz의 구형파를 입력할 때 Q1 신호의 주파수는 0.5MHz, Q2 신호의 주파수는 0.25MHz임을 확인하고 입력 신호, Q1 신호, Q2 신호의 파형을 그려보았습니다. 2. 8진 비동기 카운터 설계 버튼 스위치를 이용하여 카운트가 증가하도록 8진 비동기 카운터의 회로도를 설계하였습니다. Q1, Q2, Q3 출력 신호에 LED를 연결하여 카운터의 상태를 확인할 수 있도록 하였습니다. 3. 10진 비동기 카운터 설계 16진 비동기 카운터와 리셋 회로를 이용하여 10진...2025.01.17