
총 25개
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25
-
비즈니스 애널리틱스란 무엇인지 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 데이터를 기반으로 혁신을 추구하는 기업들의 성공 사례를 보여준다. 아마존과 넷플릭스는 고객 데이터를 분석하여 개인화된 추천 서비스를 제공하고, 새로운 콘텐츠 개발에 활용하는 등 비즈니스 애널리틱스를 효과적으로 활용하고 있다. 비즈니스 애널리틱스를 도입하기 위해서는 구체적인 목표 설정, 최신 기술 도입, 지속적인 데이터 분석 및 성과 평가가 필요하다. 2. 데이터 과학 데이터 과학은 데이터를 바탕으로 새로운 인사이트를 발견하는 융합적인 학문이다. 데이터 과학자는 컴퓨터 공학, 통계학, 수...2025.01.26
-
2023년 2학기 빅데이터의이해와활용 출석수업 중간과제 리포트 30점 만점2025.01.251. 데이터과학 데이터과학은 수학, 통계학, 코딩 기술과 해당 분야의 전문지식이 종합된 분야로, 정형 및 비정형 데이터로부터 지식과 인사이트를 추출하는 과정에서 과학적 방법론, 프로세스, 알고리즘, 시스템을 동원하는 융합 분야이다. 데이터과학자는 이러한 일련의 과정을 수행하는 전문가로, 각 해당분야 전문지식을 바탕으로 데이터를 수집, 저장, 가공하고 유의미한 데이터를 결합/분석하여 새로운 가치를 창출한다. 2. 빅데이터 빅데이터는 규모(volume), 다양성(variety), 속도(velocity)의 3V 속성을 가지며, 여기에 정...2025.01.25
-
선형회귀(Linear Regression)는 통계인가 머신 러닝인가?2025.05.081. 선형회귀 선형 회귀는 연속 값을 예측하는 데 사용되는 통계 방법입니다. 선형 회귀 모델은 두 변수 간의 관계를 설명하는 선형 방정식을 찾는 통계적 방법입니다. 선형 회귀 모델은 통계, 공학, 마케팅, 금융, 제조를 포함한 다양한 분야에서 사용됩니다. 선형 회귀는 데이터를 설명하고 미래를 예측하는 데 사용할 수 있는 가장 널리 사용되는 방법입니다. 2. 통계와 머신러닝 머신러닝의 등장으로 선형회귀는 주로 '지도 학습' 문제에서 사용됩니다. 선형회귀는 입력 변수와 출력 변수 사이의 선형적인 관계를 모델링하여 새로운 입력에 대한 출...2025.05.08
-
데이터과학과 지원 맞춤형 세특 기재 예시2025.01.051. 진로활동 특기사항 진로 지도의 날 행사에 참여하여 과학 박물관에서 자동차의 발전 과정을 확인하고 과학 공식의 실제 적용을 경험하였으며, AI 관련 학과를 체험하면서 로봇공학과 AI 분야에 대한 관심과 이해가 높아졌음을 발표함. 또한 진로 관련 뉴스와 독서 활동을 통해 인공지능과 기술 발전에 대한 인식 전환의 필요성을 깨달았고, 진로 탐색 활동으로 공학 분야의 다양한 학과와 직업군을 탐색하여 적합한 진로를 설계하고자 노력함. 2. 자율활동 특기사항 교내 축제 합창 준비, TED 발표, 학급 카페 운영 등 다양한 자율활동에 적극적...2025.01.05
-
데이터과학개론 - 범주형 데이터 및 수치형 데이터의 특징과 빅데이터 시대의 데이터 주도권2025.01.251. 범주형 데이터 및 수치형 데이터의 특징 및 종류 데이터는 크게 정형 데이터와 비정형 데이터로 구분할 수 있다. 정형 데이터의 종류에는 범주형 데이터와 수치형 데이터가 있다. 범주형 데이터는 명목형 데이터와 순서형 데이터로 구분되며, 수치형 데이터는 이산형 데이터와 연속형 데이터로 구분된다. 각 데이터 유형의 특징과 사례를 자세히 설명하였다. 2. 빅데이터 시대의 데이터 주도권 데이터 주도권이란 데이터를 이해하고 활용하는 사람이 데이터를 어떻게 바라보고 분석하고 해석하고 활용하는지에 대한 책임을 의미한다. 빅데이터 시대에 데이터...2025.01.25
-
빅데이터의 이해와 활용2025.01.251. 데이터 과학자 데이터 과학자는 데이터 과학과 관련된 분야를 전공하고 관련된 업무에 종사하는 사람을 의미한다. 즉, 현장에 존재하고 있는 대량의 데이터를 수집하고 분석에 적합한 형태로 가공하며 데이터가 의미하는 것을 이야기에 담아서 다른 사람에게 효과적으로 전달하는 역할을 수행한다. 데이터 과학이란 데이터로부터 의미 있는 정보를 추출하는 학문을 의미한다. 2. 빅데이터 확산 배경 빅데이터의 확산 배경으로는 데이터가 실제로 증가한 것이다. 컴퓨터나 인터넷 보급이 많아지게 되고 모바일 기기나 스마트폰의 이용률이 많아지며 정보가 범람...2025.01.25
-
빅데이터의 이해와 활용2025.01.251. 데이터과학자 데이터 과학자는 기계학습, 데이터 시각화, 통계 분석 등의 지식을 바탕으로 방대한 양의 데이터에서 일정한 패턴을 발견하고, 그를 통해서 인사이트를 얻어 내는 역할을 수행한다. 또한 데이터 과학자들은 복잡한 빅데이터 분석을 통해 추출한 인사이트로 다양한 비즈니스 의사 결정을 내린다. 작업 중인 데이터를 이해하며, 데이터를 정제하고, 처음부터 제대로 된 데이터가 입력될 수 있도록 데이터를 전처리하며 예측을 위한 모델을 구축하게 된다. 데이터 과학자들은 인공지능 지식과 활용 능력을 갖추어야 하며, 기계학습 알고리즘에 대...2025.01.25
-
미래사회와 소프트웨어 과제2025.01.291. 데이터 분석의 역사 데이터는 인류 역사 속에서 오래전부터 분석되어 왔다. 이집트의 토지조사, 바빌로니아의 진흙판 숫자, 중국의 인구조사, 그리스의 조세조사, 민수기의 인구조사, 로마의 생명표 등 다양한 데이터 분석 사례가 있었다. 우리나라에서도 조선시대에 호적 제도를 통해 인구통계를 내었다. 이처럼 통계학은 과거부터 국가 통치를 위해 사용되어 왔다. 2. 데이터의 진화 산업혁명 이후 데이터는 국가 데이터에서 민간 데이터로 진화했다. 데이터 저장 기술의 발전으로 소셜 네트워크 서비스 데이터가 등장했고, 데이터베이스 시대가 열렸다...2025.01.29
-
AI EXPO KOREA 2024 국제인공지능대전 참관 보고서2025.01.201. AI 기술 동향 및 전망 현재 AI 기술은 빠른 속도로 발전하고 있으며, 머신러닝, 딥러닝, 자연어 처리, 컴퓨터 비전 등 다양한 분야에서 혁신을 이루고 있다. 자율주행차, 스마트 시티, 헬스케어, 금융, 제조업 등 여러 산업에서 AI 기술이 활발히 적용되고 있으며, 데이터 분석, 예측 모델링, 자동화 등으로 업무 효율성을 극대화하고 있다. 향후 AI 기술은 더욱 정교해지고, 인간의 의사결정을 지원하며, 복잡한 문제를 해결하는 데 중요한 역할을 할 것으로 전망된다. 2. VidiGo VidiGo는 클라우드 기반 AI 영상 및 ...2025.01.20