
총 25개
-
데이터과학개론 - 범주형 데이터 및 수치형 데이터의 특징과 빅데이터 시대의 데이터 주도권2025.01.251. 범주형 데이터 및 수치형 데이터의 특징 및 종류 데이터는 크게 정형 데이터와 비정형 데이터로 구분할 수 있다. 정형 데이터의 종류에는 범주형 데이터와 수치형 데이터가 있다. 범주형 데이터는 명목형 데이터와 순서형 데이터로 구분되며, 수치형 데이터는 이산형 데이터와 연속형 데이터로 구분된다. 각 데이터 유형의 특징과 사례를 자세히 설명하였다. 2. 빅데이터 시대의 데이터 주도권 데이터 주도권이란 데이터를 이해하고 활용하는 사람이 데이터를 어떻게 바라보고 분석하고 해석하고 활용하는지에 대한 책임을 의미한다. 빅데이터 시대에 데이터...2025.01.25
-
데이터과학개론 2024년 2학기 방송통신대 중간과제물2025.01.261. 범주형 데이터와 수치형 데이터의 의미 비교 범주형 데이터는 관측치 간에 순서가 없거나 순서가 있어도 수치적으로 비교가 불가능한 데이터이다. 반면 수치형 데이터는 명확한 수치적 크기를 기반으로 하는 데이터로, 수치 간의 명확한 구분과 직접적인 비교가 가능하다. 범주형 데이터는 명목형과 순서형으로, 수치형 데이터는 이산형과 연속형으로 나뉜다. 2. 데이터 주도권을 지니기 위한 소양 데이터 주도권을 지니기 위해서는 이해력, 인문학적 소양, 통찰력, 윤리의식, 유연성 등 다양한 소양이 필요하다. 이 중에서 특히 통찰력과 윤리의식이 중...2025.01.26
-
AI EXPO KOREA 2024 국제인공지능대전 참관 보고서2025.01.201. AI 기술 동향 및 전망 현재 AI 기술은 빠른 속도로 발전하고 있으며, 머신러닝, 딥러닝, 자연어 처리, 컴퓨터 비전 등 다양한 분야에서 혁신을 이루고 있다. 자율주행차, 스마트 시티, 헬스케어, 금융, 제조업 등 여러 산업에서 AI 기술이 활발히 적용되고 있으며, 데이터 분석, 예측 모델링, 자동화 등으로 업무 효율성을 극대화하고 있다. 향후 AI 기술은 더욱 정교해지고, 인간의 의사결정을 지원하며, 복잡한 문제를 해결하는 데 중요한 역할을 할 것으로 전망된다. 2. VidiGo VidiGo는 클라우드 기반 AI 영상 및 ...2025.01.20
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26
-
비즈니스 애널리틱스란 무엇인지 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 데이터를 기반으로 혁신을 추구하는 기업들의 성공 사례를 보여준다. 아마존과 넷플릭스는 고객 데이터를 분석하여 개인화된 추천 서비스를 제공하고, 새로운 콘텐츠 개발에 활용하는 등 비즈니스 애널리틱스를 효과적으로 활용하고 있다. 비즈니스 애널리틱스를 도입하기 위해서는 구체적인 목표 설정, 최신 기술 도입, 지속적인 데이터 분석 및 성과 평가가 필요하다. 2. 데이터 과학 데이터 과학은 데이터를 바탕으로 새로운 인사이트를 발견하는 융합적인 학문이다. 데이터 과학자는 컴퓨터 공학, 통계학, 수...2025.01.26
-
비즈니스 애널리틱스 관련 용어 설명2025.01.261. 데이터 과학 데이터 과학(Data Science)은 데이터를 통해 새로운 인사이트를 발견하고, 복잡한 문제를 해결하는 학문 분야입니다. 데이터 과학은 통계학, 컴퓨터 과학, 수학 등을 융합하여 데이터를 분석하고, 이를 기반으로 의사결정을 지원하는 학문적 기초를 제공합니다. 데이터 과학자는 데이터를 수집, 처리, 분석하여 유의미한 결과를 도출하며, 이를 통해 비즈니스 문제를 해결하거나 새로운 기회를 창출합니다. 2. 데이터 애널리틱스 데이터 애널리틱스(Data Analytics)는 데이터를 분석하여 과거의 패턴을 파악하고, 현재...2025.01.26
-
[글로벌 비즈니스 애널리틱스] 비즈니스 애널리틱스의 역사와 정의, 관련 용어 설명2025.01.261. 비즈니스 애널리틱스의 역사 비즈니스 애널리틱스는 20세기 후반부터 본격적으로 발전하기 시작했다. 1960년대와 70년대에는 데이터 처리 기술의 발전이 주로 통계적 분석과 의사결정 지원 시스템(DSS)에 중점을 두고 있었다. 1990년대에는 데이터베이스 관리 시스템(DBMS)과 데이터 마이닝 기법이 등장하면서 보다 복잡한 데이터 분석이 가능해졌다. 2000년대 들어서는 빅데이터와 클라우드 컴퓨팅의 등장으로 인해 데이터 수집과 저장, 분석이 용이해지면서 비즈니스 애널리틱스가 더욱 발전하였다. 2. 비즈니스 애널리틱스의 정의 비즈니...2025.01.26
-
비즈니스 애널리틱스란 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스의 역사와 정의 비즈니스 애널리틱스는 1950년대 경영과학에서 출발하여, 기술 발전과 함께 꾸준히 진화해 왔다. 비즈니스 애널리틱스는 데이터를 기반으로 비즈니스 문제를 해결하고 전략적 의사결정을 지원하는 일련의 프로세스를 의미한다. 이는 단순한 데이터 분석을 넘어, 데이터를 통해 미래를 예측하고 최적의 행동을 결정하는 데 중점을 둔다. 2. 비즈니스 애널리틱스 관련 용어 설명 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 등 비즈니스 애널리틱스와 관련된 주요 용어들을 자세히 설명...2025.01.26
-
빅데이터의 이해와 활용2025.01.251. 데이터 과학자 데이터 과학자는 데이터 과학과 관련된 분야를 전공하고 관련된 업무에 종사하는 사람을 의미한다. 즉, 현장에 존재하고 있는 대량의 데이터를 수집하고 분석에 적합한 형태로 가공하며 데이터가 의미하는 것을 이야기에 담아서 다른 사람에게 효과적으로 전달하는 역할을 수행한다. 데이터 과학이란 데이터로부터 의미 있는 정보를 추출하는 학문을 의미한다. 2. 빅데이터 확산 배경 빅데이터의 확산 배경으로는 데이터가 실제로 증가한 것이다. 컴퓨터나 인터넷 보급이 많아지게 되고 모바일 기기나 스마트폰의 이용률이 많아지며 정보가 범람...2025.01.25
-
[A+] 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 단어 설명 (무역학과 글로벌비즈니스애널리틱스)2025.01.241. 데이터 과학 데이터 과학은 방대한 데이터를 수집, 처리, 분석하여 의미 있는 정보를 추출하는 과정을 연구하는 학문입니다. 데이터 과학은 다양한 통계적 기법과 머신러닝 알고리즘을 사용하여 데이터를 기반으로 유의미한 통찰을 도출하고, 이를 통해 비즈니스 문제를 해결합니다. 데이터 과학은 데이터 엔지니어링, 데이터 분석, 모델링, 시각화, 그리고 결과 해석의 과정을 포함하여 기업이 데이터를 통해 실질적인 가치를 얻을 수 있도록 돕습니다. 2. 데이터 애널리틱스 데이터 애널리틱스는 데이터를 기반으로 특정 문제를 분석하고, 그에 대한 ...2025.01.24