
총 21개
-
기하 보고서 (leniscate, 두 초점사이 거리의 곱이 일정할 때)2025.01.151. 렘니스케이트 곡선 책 '원뿔에서 태어난 이차곡선'을 읽으며 이차곡선의 유래 과정에 대해 잘 이해할 수 있었다. 책을 읽으며 갖게된 초점간의 관계에 대한 궁금증을 바탕으로 두 초점사이의 거리의 곱이 일정할 때 그려지는 자취의 방정식이 무한대꼴의 자취를 가진다는 것을 알 수 있었으며 이를 극좌표계를 통해 나타내는 것이 유용함을 알게되었다. 또한 렘니스케이트 곡선이 자율주행에서의 센서나 오일펌프의 설치에 적용되는 것을 알 수 있었다. 1. 렘니스케이트 곡선 렘니스케이트 곡선은 수학 및 물리학 분야에서 매우 중요한 개념입니다. 이 곡...2025.01.15
-
일상생활 속에서 수학을 활용한 사례 조사 분석2025.05.041. 음료수 캔의 모양 음료수 캔이 원기둥 모양으로 제작되는 이유는 사람의 손에 쥐기 편하고, 각기둥에 비해 주변의 압력을 받기 쉽지 않으며, 충격을 잘 흡수할 수 있기 때문이다. 또한 수학적으로 볼 때 원기둥, 정사각기둥, 정삼각기둥의 단면적이 같더라도 둘레와 겉넓이가 다르기 때문에 원기둥이 가장 경제적이다. 2. 카메라 삼각대 카메라 삼각대가 3개의 다리로 이루어진 이유는 평면의 결정 조건 때문이다. 공간상의 서로 다른 두 점을 포함하는 평면은 무수히 많지만, 한 직선 위에 있지 않은 세 점을 포함하는 평면은 단 하나로 결정된다...2025.05.04
-
대학수학에서 배우는 수학, 배우고 싶은 수학2025.01.211. 미적분학 미적분학은 변화율과 누적값을 다루는 수학의 기초 분야로, 연속적인 변화를 다루며 극한, 미분, 적분 개념을 중심으로 한다. 물리학, 공학, 경제학 등 거의 모든 과학 분야에서 광범위하게 사용되며, 건축 분야에서는 구조물의 응력 분석, 열 전달 계산, 곡면 설계 등에 활용된다. 2. 선형대수학 선형대수학은 벡터, 행렬, 선형 변환 등을 연구하는 분야로, 다차원 공간에서의 선형 관계를 다루며 연립방정식 해법에 중점을 둔다. 컴퓨터 그래픽스, 기계 학습, 양자 역학 등에서 핵심적인 역할을 하며, 건축 분야에서는 3D 모델링...2025.01.21
-
<현역의대생> 공간도형, 공간벡터 단원 블렌더(Blender)로 풀기_탐구보고서_기하(세특)2025.01.111. 블렌더(Blender) 블렌더는 무료로 사용할 수 있는 오픈소스 3D 그래픽 프로그램으로, 게임 모델러, VFX 아티스트, 애니메이터, 피규어 아티스트, 건축가 등 많은 사람들이 다양한 목적으로 사용하고 있다. 직관적이고 간편할 뿐만 아니라 다양한 고급기능까지도 제공하며, 많은 사용자 수로 인해 공유되는 유용한 정보들과 뛰어난 안정성, 빠른 처리속도 등으로 계속해서 점유율을 넓히고 있는 3D 그래픽 프로그램의 선두주자이다. 2. 공간도형 블렌더를 이용하여 다양한 공간도형을 만들 수 있다. 길이, 각, 넓이 보기 기능을 활성화하...2025.01.11
-
확률과 통계 - 뷔퐁의 바늘실험2025.01.161. 뷔퐁의 바늘 실험 프랑스의 수학자 뷔퐁 백작(Georges Louis Leclerc, Comte de Buffon)은 1733년 경에 원주율의 값을 계산하기 위하여 평행선이 그려져 있는 탁자에 바늘을 던지는 실험을 제시하였는데, 이 실험을 뷔퐁의 바늘이라고 합니다. 뷔퐁의 뜨개바늘 문제를 실험적으로 검사함으로써 확률의 개념을 이해하고 실험값을 처리하는 기본 기술을 익히고자 하였습니다. 2. 확률오차 확률오차는 측정값을 얻을때 추정되는 오차의 크기를 나타낸다. 어떤 측정값이 chi = bar { x } PLUSMINUS sigm...2025.01.16
-
기하 정사영 일상생활 창의 리포트2025.01.281. 정사영을 활용한 키 측정 정사영을 활용하여 기계 없이도 키를 측정할 수 있는 방법을 소개했습니다. 입체인 사람의 몸을 벽에 수직으로 부착했다고 가정하고, 그렇게 했을 때 생기는 수직 부분의 길이를 계산하면 그 사람의 키를 측정할 수 있습니다. 이는 3차원 입체도형을 2차원 정사영으로 변환하는 원리를 활용한 것입니다. 2. 정사영을 활용한 시간 측정 조선 시대 과학자 장영실이 개발한 앙부일구에서는 정사영의 원리를 활용하여 시간을 측정할 수 있었습니다. 동쪽에서 떠서 서쪽으로 질 때까지 하루의 햇빛 고도량을 바탕으로 이를 정사영시...2025.01.28
-
삼각함수를 이용한 혈흔 패턴분석 수사법(A+리포트)2025.04.281. 혈흔 패턴 분석을 통한 수사법 범죄 현장에서 발견된 혈액을 분석하는 수사에서 혈흔 패턴 분석은 필수적이다. 혈흔의 모양과 흩뿌려진 형태를 관찰하면 범죄가 어떻게 일어났는지 진행되었는지 재구성하는 데 도움이 된다. 혈흔 패턴 분석을 위해서는 삼각함수 법칙, 유체역학 관련 방정식 등 수리과학적 분석이 필수적이다. 1. 혈흔 패턴 분석을 통한 수사법 혈흔 패턴 분석은 범죄 현장에서 중요한 증거 수집 방법 중 하나입니다. 혈흔 패턴 분석을 통해 범죄 현장에서 발생한 사건의 상황을 재구성하고, 용의자의 행동을 추정할 수 있습니다. 이를...2025.04.28
-
피타고라스 정리를 통한 쌍곡선 방정식 유도2025.01.081. 쌍곡선 방정식 수업 시간에 배운 쌍곡선의 방정식 조건에 대한 교과서의 부족한 증명에 의문을 품고, 조건의 기하적 의미를 밝혀내는 과정에서 피타고라스 정리와 연관이 있음을 깨달았습니다. 이를 바탕으로 피타고라스 정리를 통해 쌍곡선의 방정식을 유도하는 활동을 진행했습니다. 유도 과정에서 쌍곡선과 유사한 식을 얻었지만, 정의와 다르게 'xy' 항이 존재하여 해석에 어려움을 겪었습니다. 탐구 끝에 내가 유도한 식이 회전시킨 쌍곡선의 방정식이었다는 결론을 내리고, 행렬 개념을 통해 xy항이 포함된 이차곡선을 그리는 방법을 탐구하였습니다...2025.01.08
-
르네상스 전쟁 회화의 특징 - 파올로 우첼로와 피에로 델라 프란체스카의 작품 비교2025.01.091. 파올로 우첼로의 <산로마노 기마전투> 파올로 우첼로의 <산로마노 기마전투>는 1400년대 이탈리아의 격동기를 배경으로 한다. 당시 이탈리아에서는 도시들이 세력을 키워나가는 과정에서 격돌이 일어나 전쟁이 끊이질 않았다. 이 그림은 피렌체의 힘과 패권을 관객이 인정하도록 시각적으로 설득시키는 기능을 했다. 우첼로는 원근법과 기하학에 강박적으로 매달렸고, 이러한 태도는 작품에서 잘 드러난다. 전투 장면을 묘사했는데 중앙 투시 도법과 기하학을 지나치게 중시한 나머지 현실적이라기보다는 환상적인 효과를 자아내고 있다. 2. 피에로 델라 ...2025.01.09
-
R & E 활동 보고서 <자연이 품은 수의 나열과 비율 연구>2025.05.081. 피보나치 수(열) 피보나치 수열은 자연에서 많이 발견되는 수열로, 처음 두 항이 1이고 이후 항은 바로 앞의 두 항의 합으로 이루어진다. 이 수열은 수학, 과학, 자연 등 다양한 분야에서 중요한 의미를 가지고 있다. 2. 황금비 황금비는 약 1.618의 비율로, 자연과 예술 등 다양한 분야에서 발견되는 중요한 수학적 개념이다. 황금비는 자연스러운 균형과 아름다움을 나타내는 것으로 여겨지며, 많은 학자들이 이에 대해 연구해왔다. 3. 자연 속 수학 자연계에는 피보나치 수열, 황금비 등 다양한 수학적 규칙성이 숨어있다. 이러한 규...2025.05.08