총 33개
-
일상생활 속에서 수학을 활용한 사례 조사 분석2025.05.041. 음료수 캔의 모양 음료수 캔이 원기둥 모양으로 제작되는 이유는 사람의 손에 쥐기 편하고, 각기둥에 비해 주변의 압력을 받기 쉽지 않으며, 충격을 잘 흡수할 수 있기 때문이다. 또한 수학적으로 볼 때 원기둥, 정사각기둥, 정삼각기둥의 단면적이 같더라도 둘레와 겉넓이가 다르기 때문에 원기둥이 가장 경제적이다. 2. 카메라 삼각대 카메라 삼각대가 3개의 다리로 이루어진 이유는 평면의 결정 조건 때문이다. 공간상의 서로 다른 두 점을 포함하는 평면은 무수히 많지만, 한 직선 위에 있지 않은 세 점을 포함하는 평면은 단 하나로 결정된다...2025.05.04
-
피타고라스 정리를 통한 쌍곡선 방정식 유도2025.01.081. 쌍곡선 방정식 수업 시간에 배운 쌍곡선의 방정식 조건에 대한 교과서의 부족한 증명에 의문을 품고, 조건의 기하적 의미를 밝혀내는 과정에서 피타고라스 정리와 연관이 있음을 깨달았습니다. 이를 바탕으로 피타고라스 정리를 통해 쌍곡선의 방정식을 유도하는 활동을 진행했습니다. 유도 과정에서 쌍곡선과 유사한 식을 얻었지만, 정의와 다르게 'xy' 항이 존재하여 해석에 어려움을 겪었습니다. 탐구 끝에 내가 유도한 식이 회전시킨 쌍곡선의 방정식이었다는 결론을 내리고, 행렬 개념을 통해 xy항이 포함된 이차곡선을 그리는 방법을 탐구하였습니다...2025.01.08
-
기하학의 실생활 응용: 타원과 쌍곡선2025.11.181. 타원의 정의 및 신장 결석 파쇄기 타원은 두 점 F1, F2로부터의 거리가 일정한 점의 집합으로 정의된다. 신장 결석 파쇄기는 이러한 타원의 성질을 이용한 의료기구로, 수술을 하지 않고도 환자의 신장에 있는 결석을 안전하게 제거할 수 있다. 타원의 초점에 에너지원을 배치하면 다른 초점에 집중되는 성질을 활용하여 결석을 파쇄한다. 2. 쌍곡선의 정의 및 쌍곡선 항법 쌍곡선은 평면 위의 두 정점으로부터의 거리의 차가 일정한 점들의 집합으로 만들어지는 곡선이며, 기준이 되는 두 정점을 초점이라 한다. 쌍곡선 항법은 두 개의 전파 수...2025.11.18
-
미분기하1 과제 솔루션2025.11.121. 미분기하학 미분기하학은 미분과 적분의 개념을 기하학적 도형에 적용하여 곡선과 곡면의 성질을 연구하는 수학 분야입니다. 곡률, 비틀림, 측지선 등의 개념을 통해 다양한 기하학적 구조를 분석하며, 현대 물리학과 공학 분야에서 광범위하게 활용됩니다. 2. 곡선론 곡선론은 3차원 공간에서 곡선의 기하학적 성질을 연구하는 미분기하학의 기본 분야입니다. 곡선의 곡률과 비틀림을 계산하고, Frenet-Serret 공식을 이용하여 곡선의 형태를 분석하며, 곡선의 기본정리를 통해 곡선을 완전히 결정할 수 있습니다. 3. 곡면론 곡면론은 3차원...2025.11.12
-
르네상스 전쟁 회화의 특징 - 파올로 우첼로와 피에로 델라 프란체스카의 작품 비교2025.01.091. 파올로 우첼로의 <산로마노 기마전투> 파올로 우첼로의 <산로마노 기마전투>는 1400년대 이탈리아의 격동기를 배경으로 한다. 당시 이탈리아에서는 도시들이 세력을 키워나가는 과정에서 격돌이 일어나 전쟁이 끊이질 않았다. 이 그림은 피렌체의 힘과 패권을 관객이 인정하도록 시각적으로 설득시키는 기능을 했다. 우첼로는 원근법과 기하학에 강박적으로 매달렸고, 이러한 태도는 작품에서 잘 드러난다. 전투 장면을 묘사했는데 중앙 투시 도법과 기하학을 지나치게 중시한 나머지 현실적이라기보다는 환상적인 효과를 자아내고 있다. 2. 피에로 델라 ...2025.01.09
-
<현역의대생> 공간도형, 공간벡터 단원 블렌더(Blender)로 풀기_탐구보고서_기하(세특)2025.01.111. 블렌더(Blender) 블렌더는 무료로 사용할 수 있는 오픈소스 3D 그래픽 프로그램으로, 게임 모델러, VFX 아티스트, 애니메이터, 피규어 아티스트, 건축가 등 많은 사람들이 다양한 목적으로 사용하고 있다. 직관적이고 간편할 뿐만 아니라 다양한 고급기능까지도 제공하며, 많은 사용자 수로 인해 공유되는 유용한 정보들과 뛰어난 안정성, 빠른 처리속도 등으로 계속해서 점유율을 넓히고 있는 3D 그래픽 프로그램의 선두주자이다. 2. 공간도형 블렌더를 이용하여 다양한 공간도형을 만들 수 있다. 길이, 각, 넓이 보기 기능을 활성화하...2025.01.11
-
원뿔곡선 심화 탐구: 단면의 각도에 따른 이차곡선 분류2025.11.121. 원뿔곡선의 정의 및 분류 아폴로니우스의 원뿔곡선론에 따르면, 원뿔과 평면의 교집합으로 생성되는 곡선을 원뿔곡선이라 한다. 원뿔의 반꼭지각 α와 평면이 원뿔의 축과 이루는 각 β의 대소관계에 따라 타원(α < β), 포물선(α = β), 쌍곡선(α > β), 원(α = 0)으로 분류된다. 꼭짓점 포함 여부에 따라 퇴화 원뿔곡선과 매끄러운 원뿔곡선으로도 구분된다. 2. 이심률(Eccentricity)의 개념과 응용 이심률은 원뿔곡선의 특성을 나타내는 중요한 매개변수로, e = β/α로 정의된다. e = 0일 때 원, 0 < e <...2025.11.12
-
생활 속 현상들의 완벽한 이해에 필수적인 기하2025.11.181. 타원의 정의 및 성질 타원은 평면 위의 두 정점(초점)에서 거리의 합이 일정한 점들의 집합으로 만들어지는 곡선이다. 타원을 정의하는 기준이 되는 두 정점을 타원의 초점이라고 한다. 타원은 원의 정사영으로도 이해할 수 있으며, 이러한 기하학적 성질은 실생활의 다양한 현상을 설명하는 데 필수적이다. 2. 성바오로 대성당의 속삭이는 회랑 영국 런던의 성바오로 대성당은 '속삭이는 회랑'으로 유명하다. 복도 한 곳에서 작은 소리로 속삭이면 조금 떨어진 곳에서는 못 듣지만, 더 멀리 있는 특정 장소에서는 명확하게 들린다. 이는 타원의 초...2025.11.18
-
아르키메데스의 수학적 업적2025.01.201. 원주율 계산 아르키메데스는 실진법을 이용하여 원주율 π의 근삿값을 최초로 구했다. 그는 원에 내접하는 정육각형과 외접하는 정육각형의 둘레 길이를 이용하여 π의 값이 3과 3.47 사이에 있다는 것을 밝혀냈다. 이후 변의 개수를 늘려가며 더 정확한 값을 구했고, 최종적으로 π의 값이 3.1416임을 증명했다. 이는 당시 그리스에서 알려진 가장 정확한 원주율 값이었다. 2. 곡선 및 곡면 도형의 넓이와 부피 계산 아르키메데스는 실진법을 사용하여 곡선이나 곡면으로 둘러싸인 도형의 대략적인 넓이와 부피를 구했다. 도형을 같은 두께의 ...2025.01.20
-
기하학의 역사2025.05.051. 고대 기하학 고대 오리엔트에서 시작하여, 초등 기하학은 그리스의 유클리드에 의해 집대성되었고 현재는 이것을 더 발전시켜 해석 기하학·미분 기하학·사영 기하학·위상 기하학 등 다양한 내용·방법을 가졌다. 고대 기하학은 대략 기원전 5000~3000년 사이에 고대 동양 일부 지역에서 공학과 농업 및 상업적인 업무와 종교 의식을 보조하기 위한 실용적인 학문으로 등장하였다. 고대 수학자인 에우클레이데스는 고대 그리스 시대의 수학적 업적을 정리하여 <원론>을 집필하였고, 아르키메데스는 도형의 넓이와 부피의 계산에 탁월한 업적을 남겼다....2025.05.05