
총 52개
-
에폭시 수지의 합성방법, 분자구조 및 분석결과 예상 (Bisphenol A, Epichlorohydrin)2025.01.201. 에폭시 수지 합성 본 실험에서는 비스페놀과 에피클로로히드린을 반응시켜 에폭시 수지를 합성하고 생성 반응을 이해한다. 에폭시 수지는 일반적으로 히드록시기를 2개 이상 갖는 화합물과 에피클로로히드린을 반응시켜 얻는다. 가장 간단한 예로 2몰의 에피클로로히드린과 비스페놀A 1몰을 반응시키면 diepoxide가 생성된다. diepoxide를 비스페놀A와 적당한 비율로 조절하여 반응시키면 고분자량의 에폭시 수지를 얻을 수 있다. 2. 비스페놀 A 비스페놀 A(bisphenol A; 4,4'-isopropylidenediphenol, B...2025.01.20
-
A+ 졸업생의 재결정 실험 결과 레포트2025.01.141. 재결정법 재결정법은 고체물질을 정제하는 가장 일반적인 방법이다. 고체를 용매에 용해시켜 더운 상태에서 포화용액을 만든 후 여과하고 냉각시켜 다시 결정으로 석출시키는 방법이다. 이때 미량으로 함유되어 있는 불순물은 모액 중에 용존하기 때문에 여과과정을 통해 제거된다. 2. 온도에 따른 용해도 차이 재결정법을 사용할 때 높은 온도와 낮은 온도에서의 용해도 차이가 큰 결정성 고체는 높은 온도에서 이 고체들의 포화용액을 만들어 이것을 빨리 걸러 온도를 천천히 낮추어 주면 비교적 불순물이 적은 물질을 얻어낼 수 있다. 대다수 화합물의 ...2025.01.14
-
A+ 졸업생의 PS 벌크중합 예비 레포트(10페이지)2025.01.161. 라디칼 중합 라디칼 중합은 개시제를 사용하여 라디칼을 형성하는 중합 방법으로, 열이나 광분해에 의해 라디칼이 생성된다. 이번 실험에서 사용한 AIBN은 열에 의한 균일 분해로 라디칼을 생성하는 개시제이다. 라디칼 중합에는 개시, 성장, 전이, 정지 등의 반응이 있으며, 정지 반응이 2차일 때 특정 속도식이 성립한다. 2. 벌크 중합 벌크 중합은 용매 등을 사용하지 않고 단량체와 개시제 등 중합에 필요한 최소 성분만 넣고 중합하는 방법이다. 이는 가장 간단하고 빠른 중합 반응으로, 순도가 높고 분자량이 큰 고분자를 얻을 수 있다...2025.01.16
-
나일론수지의 합성(예비레포트)2025.01.231. 나일론 6,10의 합성 나일론 6,6은 탄소수 6개인 다이아민과 탄소수 6개인 다이카르복실산을 반응시켜 얻는다. 탄소수 10개인 산염화물을 사용하면 낮은 온도에서 나일론 6,10을 합성할 수 있다. 계면 중합 방법은 두 반응물을 다른 상에 녹여 계면에서 중합반응이 일어나게 하는 것으로, 중합도를 높이는데 유리하다. 실험에서는 sebacoyl chloride와 헥사메틸렌디아민을 사용하여 나일론 6,10을 합성하고, 비교반과 교반 계면 중합 방법을 사용하였다. 2. sebacoyl chloride 합성 sebacoyl acid와 ...2025.01.23
-
일반화학실험(1) 실험 12 고분자 화합물의 합성 예비2025.05.091. 고분자 화합물 이번 실험에서는 PVA와 borate 이온을 반응시켜서 PVA-borate 다리 걸친 중합체를 합성하도록 한다. 특히 PVA와 borete 이온의 상대적인 양을 다르게 반응시켜서 중합체를 합성하고, 이때 형성된 중합체의 차이를 cross-linking 구조와 연관시켜 관찰한다. 2. 중합반응 중합반응이란 단랑체가 고분자 사슬을 형성하는 과정을 의미한다. 중합반응에는 첨가중합(addition polymerization)과 축합중합(condensation polymerization)이 있다. 2번에서 제시된 고분자들...2025.05.09
-
나일론 합성과 헤어젤 결과 A+ 레포트2025.01.171. 나일론 합성 나일론 합성 실험을 수행하였으며, 헥사메틸다이아민, 염화 세바코일, 수산화 나트륨을 사용하여 중합 반응을 진행하였다. 이 과정에서 나일론의 이론적 생성량과 실험실에서의 수득량, 수득률 등을 확인하였다. 또한 수산화 나트륨을 첨가하는 이유, 나일론 6 또는 6.10의 구조, 계면 중합 반응을 촉진시킬 수 있는 방법 등을 분석하였다. 2. 헤어젤 결과 나일론 합성 실험 외에도 헤어젤 실험을 수행하였으며, 실험 과정에서 발생한 오차 요인들을 고찰하였다. 예를 들어 두 용액이 처음 만나는 곳에서 나일론이 다량 생겨 엉켜버...2025.01.17
-
고분자합성실험 - 폴리비닐알코올 합성 A+ 보고서2025.01.171. 폴리비닐알코올(PVA) 폴리비닐 알코올(PVA)은 물에 녹는 중합체이다. 이는 vinyl-alcohol이라고도 한다. 비닐알코올(CH2=CHOH)은 대기 중에서 알데하이드(Aldehyde)와 알코올(Alcohol)로 가역적으로 변화하기 때문에, 비닐알코올로 바로 PVA를 중합하여 제조할 수는 없다. 대신 비닐아세테이트(Vinyl acetate)로 라디칼 중합하여 폴리비닐아세테이트(Polyvinyl acetate, PVAc)를 얻은 후 이를 가수분해 하거나 알코올을 첨가하여 alcoholysis 하여 생산한다. PVAc에서 PV...2025.01.17
-
나일론의 합성 실험2025.05.101. 고분자 화합물 고분자는 분자의 양 끝에 다른 분자와 공유 결합을 할 수 있는 작용기를 가진 단위체가 반복적으로 결합하는 중합반응으로 만들어진 중합체이다. 일반적으로 분자량이 1만 이상인 것을 고분자 화합물로 부르며 저분자 화합물과 구별한다. 고분자는 각 분자 내 원자 간의 결합 형태가 주로 공유결합으로 구성이 되어 있으며, 단량체의 중합에 의해 거대 분자를 형성한다. 고분자는 유래에 따라 천연고분자와 합성 고분자로 나뉘며, 골격 구조, 결정 형태, 가열 후 변형 유형 등에 따라 다양한 특성을 가진다. 2. 나일론 610의 합성...2025.05.10
-
비닐 단량체 및 라디칼 개시제의 정제2025.01.271. 단량체 정제 단량체의 순도는 중합 반응에서 매우 중요하며, 특히 분순물이 중합 금지제이거나 정지 반응을 일으키는 물질인 경우 ppm 단위라도 중합 속도 및 분자량에 큰 영향을 미친다. 단량체 정제 방법에는 증류, 재결정, 추출, 크로마토그래피 등이 있으며, 중합 방법에 따라 적절한 정제 방법을 선택해야 한다. 스타이렌의 경우 페놀계 중합 금지제를 포함하고 있어 염기성 용액으로 정제할 수 있다. 2. 라디칼 개시제 정제 라디칼 중합에서 개시제의 순도 또한 중요하다. 라디칼 개시제는 과산화물계, 아조계, 기타 화합물 등으로 분류되...2025.01.27
-
나일론의 합성2025.01.131. 고분자 화합물 고분자 화합물은 많은 수의 단위체인 소단위체들이 반복적으로 결합된 분자를 말한다. 고분자 화합물에서 탄소원자는 본질적으로 무제한의 길이를 가진 안정한 사슬로 이어질 수 있다. 고분자는 저분자량의 수많은 단위들이 공유결합으로 연결되어 이루어진 고분자량의 물질을 말한다. 작은 분자들이 반복적으로 합쳐져서 고분자를 형성하는 과정을 Polymerization이라 하며, 이때 작은 분자들을 단량체 (monomer)라 한다. 2. 중합 반응 중합 반응에는 축합 반응과 첨가 반응이 있다. 축합 반응은 단량체들이 결합 시에 물...2025.01.13