
총 381개
-
트랜지스터 분해2025.05.121. 트랜지스터 트랜지스터는 전자 회로에서 신호 증폭, 스위칭 등의 기능을 수행하는 핵심 부품입니다. 이 자료에서는 npn 트랜지스터의 구조와 원리를 설명하고 있습니다. 트랜지스터는 emitter, collector, base의 3개 단자로 구성되어 있으며, 수지 케이스로 내부 부품을 보호하고 있습니다. 분해 결과 트랜지스터 내부에는 copper frame과 passivated die가 있음을 확인할 수 있었습니다. 1. 트랜지스터 트랜지스터는 현대 전자 기술의 핵심 구성 요소로, 전자 회로의 기본 단위입니다. 트랜지스터는 전기 신...2025.05.12
-
전자회로실험 과탑 A+ 예비 보고서 (실험 24 연산 증폭기 응용 회로 2)2025.01.291. 적분기 회로 적분기 회로는 입력 저항 R과 피드백 커패시터 C로 이루어진 간단한 구성입니다. 입력 신호는 R을 통해 연산 증폭기의 반전 입력(-) 단자로 들어가고, 출력은 C를 통해 피드백됩니다. 입력 신호에 의해 전류가 흐르고, 이 전류는 커패시터에 전하를 축적합니다. 커패시터 전하가 시간에 따라 누적되면서 출력 전압이 변화하며, 출력 전압은 입력 전압의 적분값에 비례합니다. 적분기 회로는 입력 신호가 일정하면 출력이 선형적으로 증가하거나 감소하며, 저주파 신호에 민감하고 고주파 신호는 감쇠됩니다. 적분기 회로는 속도에서 위...2025.01.29
-
전자회로실험 과탑 A+ 예비 보고서 (실험 11 공통 소오스 증폭기)2025.01.291. 공통 소오스 증폭기 이 실험에서는 MOSFET을 이용한 공통 소오스 증폭기의 동작 원리를 공부하고, 실험을 통하여 특성을 측정하고자 한다. 공통 소오스 증폭기는 게이트가 입력 단자, 드레인이 출력 단자, 소오스가 공통 단자인 증폭기로서 높은 전압 이득을 얻을 수 있는 장점이 있어 널리 사용되고 있다. 이 실험에서는 공통 소오스 증폭기의 입력-출력 특성 곡선을 구하고, 소신호 등가회로의 개념을 적용하여 전압 이득을 구해본 다음, 실험을 통하여 동작을 확인하고자 한다. 2. MOSFET 소신호 등가회로 NMOS의 소신호 등가회로는...2025.01.29
-
전자회로실험 과탑 A+ 예비 보고서 (실험 23 연산 증폭기 응용 회로 1)2025.01.291. 비반전 증폭기 비반전 증폭기는 연산 증폭기의 비반전 단자에 입력 신호를 연결하여 신호를 증폭하는 회로입니다. 이 회로에서 입력 신호가 비반전(+) 단자로 들어가기 때문에, 출력 신호는 입력 신호와 동일한 위상을 가지며, 반전되지 않습니다. 이득은 피드백 저항과 입력 저항의 비율로 결정되며, 높은 입력 임피던스와 낮은 출력 임피던스를 가지는 특성이 있어 신호 처리에 유리합니다. 2. 반전 증폭기 반전 증폭기는 연산 증폭기의 반전(-) 단자에 입력 신호를 연결하여 신호를 증폭하는 회로입니다. 이 회로에서 출력 신호는 입력 신호와 ...2025.01.29
-
[A+] 전자회로설계실습 10차 예비보고서2025.05.101. OP-Amp를 이용한 Oscillator (신호발생기) 설계 이 보고서는 OP-Amp를 이용한 Oscillator (신호발생기)를 설계하고 측정하여 positive feedback의 개념을 파악하고, 피드백 회로의 parameter 변화에 따른 신호 파형에 대해 학습하는 것을 목적으로 합니다. 설계 과정에서 OrCAD PSPICE를 사용하여 회로를 설계하고 시뮬레이션을 수행하였으며, 피드백 factor (β)와 피드백 저항 (R)의 변화에 따른 영향을 분석하였습니다. 1. OP-Amp를 이용한 Oscillator (신호발생기)...2025.05.10
-
[기초전자실험 with pspice] 04 옴의법칙 결과보고서 <학점 A+ 받음>2025.04.281. 옴의 법칙 실험을 통해 옴의 법칙을 확인하고 전압과 전류의 관계, 저항에 따른 전류의 변화를 이해하였다. 실험 과정에서 전류 측정 방법에 대한 주의가 필요하다는 것을 깨달았다. 2. 전압-전류 관계 실험 결과에 따르면 전압이 증가할수록 전류가 증가하는 비례 관계를 확인할 수 있었다. 특히 3V에서 4.2193 mA, 9V에서 14.910 mA로 전압 3배 증가 시 전류도 약 3배 증가하는 것을 확인하였다. 3. 저항에 따른 전류 변화 저항값이 작을수록 전압 증가에 따른 전류 증가 폭이 크고, 저항값이 클수록 전류 증가 폭이 작...2025.04.28
-
전자회로실험 과탑 A+ 예비 보고서 (실험 3 정전압 회로와 리미터)2025.01.291. PN 접합 다이오드를 이용한 전압 레귤레이터 PN 접합 다이오드를 이용한 전압 레귤레이터는 부하 저항과 병렬로 다이오드를 연결하여, 입력 전압이나 부하 전류의 변화에도 출력 전압이 크게 변화하지 않도록 설계된 회로입니다. 입력 전압이 변하더라도 다이오드의 특성에 의해 출력 전압의 변화가 제한되기 때문입니다. PSpice를 이용하여 입력 전압의 변화와 부하 전류의 변화에 따른 출력의 변화를 모의실험하였습니다. 2. 제너 다이오드를 이용한 전압 레귤레이터 제너 다이오드를 이용한 전압 레귤레이터는 PN 접합 다이오드와 유사한 동작 ...2025.01.29
-
전자회로실험 과탑 A+ 결과 보고서 (실험 10 MOSFET 바이어스 회로)2025.01.291. 게이트 바이어스 회로 게이트 바이어스 회로는 가장 기본적인 전압분배 MOSFET 바이어스 회로이다. 이 회로는 소스 단자에 저항 R_S를 추가함으로써, R_G1과 R_G2의 변화에 따른 V_GS전압과 I_D 전류의 변화를 줄일 수 있다. 회로의 각 노드의 전압과 전류를 구하면 I_D와 V_GS를 안정적으로 유지할 수 있다. 이 회로는 전류 제어가 용이하고, 트랜지스터가 포화 영역에서 증폭기로 안정적으로 동작하는 데 적합하다. 2. 다이오드로 연결된 MOSFET 바이어스 회로 다이오드로 연결된 MOSFET 바이어스 회로는 피드백...2025.01.29
-
A+ 전자회로설계실습_Op Amp를 이용한 다양한 Amplifier 설계2025.01.211. 센서 측정 및 등가회로 센서의 출력신호가 주파수 2 KHz의 정현파이고, 오실로스코프로 직접 측정한 결과 peak to peak 전압이 200 ㎷이었다. 센서의 부하로 10 KΩ 저항을 연결한 후 10 KΩ 저항에 걸리는 전압을 측정하였더니 peak to peak 전압이 100 mV이었다. 이를 통해 센서의 Thevenin 등가회로를 구할 수 있으며, Thevenin 전압은 200mV, 내부저항은 10kΩ임을 알 수 있다. 따라서 센서의 Thevenin 등가회로를 Function generator와 저항으로 구현하려면 Func...2025.01.21
-
옴의 법칙 실험2025.01.221. 옴의 법칙 옴의 법칙은 전자회로에서 중요한 개념으로, 이번 실험을 통해 탄소저항이 옴의 법칙을 만족하는지, 다이오드가 옴의 법칙을 성립하는지 확인하였다. 실험 1에서는 저항에 흐르는 전류와 전압을 측정하여 옴의 법칙을 이용해 저항값을 계산하고 표시된 저항값과 비교하였다. 실험 2에서는 다이오드의 특성을 알아보기 위해 옴의 법칙을 이용해 다이오드의 저항을 구하였고, 다이오드에 전류가 흐를 때는 옴의 법칙을 만족하지만 흐르지 않을 때는 옴의 법칙을 만족하지 않는다는 것을 확인하였다. 실험 3에서는 발광 다이오드의 특성을 알아보고 ...2025.01.22