
총 76개
-
인공지능을 이용한 채팅 기능 챗GPT에 대한 조사 및 느낀점2025.05.061. 챗GPT 챗GPT는 OpenAI에서 개발한 대화형 인공지능 언어모델입니다. 챗GPT는 인간과 자연어로 대화하는 것처럼 이전 대화 기록과 문맥을 파악하여 자연스러운 답변을 생성할 수 있습니다. 챗GPT는 Transformer라는 딥러닝 모델 아키텍처를 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해와 생성 능력을 향상시킵니다. 챗GPT는 대화 생성 능력이 뛰어나기 때문에, 챗봇, 가상 비서, 자연어 이해(NLU), 기계 번역(MT) 등의 분야에서 활용될 수 있습니다. 2. 챗GPT의 역사 및 배경 챗GPT 모델은 O...2025.05.06
-
트랜스포머 모델링2025.05.061. 트랜스포머 모델 트랜스포머는 어텐션만으로 구성된 신경망 모델로, RNN이나 CNN의 단점을 보완한 모델입니다. 트랜스포머는 어텐션 메커니즘을 사용하며, 단어를 동시에 고려할 수 있고 입력에 순서 정보가 없다는 특징이 있습니다. 트랜스포머 인코더는 멀티헤드 셀프 어텐션으로 구성되어 있으며, 트랜스포머 디코더는 마스크드 멀티헤드 셀프 어텐션을 사용합니다. 2. CNN의 문제점 CNN은 커널을 이용하기 때문에 이미지의 특징을 추출하는데 있어 국소적인 부분만을 고려하는 문제점이 있습니다. 3. RNN의 문제점 RNN은 시간의 흐름에 ...2025.05.06
-
생성적 적대 신경망 (GAN)2025.05.091. 생성적 적대 신경망 (GAN) 생성적 적대 신경망(Generative Adversarial Network)은 2014년에 이안 굿펠로우와 그의 팀에 의해 처음 소개되었습니다. 이 모델은 딥러닝 분야에서 혁신적인 기술로 인정받고 있으며, 이미지 생성, 음성 합성, 자연어 처리 등 다양한 분야에서 활발하게 적용되고 있습니다. GAN은 기본적으로 생성자와 판별자라는 두 개의 신경망으로 구성되며, 서로 경쟁하며 성능을 향상시키는 특징을 갖고 있습니다. 생성자는 실제와 유사한 데이터를 생성하기 위해 노력하고, 판별자는 생성자가 생성한 ...2025.05.09
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.291. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 자연어를 이해하고 생성하는 데 중점을 둔 모델입니다. 방대한 데이터 학습, 자연어 생성 능력, 단일 모달리티 처리가 주요 특징이며, 챗봇, 문서 요약 및 생성, 번역 시스템, 코딩 보조 도구 등에 활용됩니다. 2. LMM(Large Multimodal Model) LMM은 텍스트, 이미지, 오디오, 비디오와 같은 다양한 형태의 데이터를 동시에 처리할 수 있는 모델입니다. 다양한 데이터 소스, 상호작용 능력, 복합적 태스크 수행이 주요 특징이...2025.01.29
-
언어를 영역별 구분할 때 내용, 형식, 사용에 따른 의미론, 음운론, 형태론, 통사론, 화용론2025.01.241. 의미론 의미론은 언어의 의미를 체계적으로 연구하는 학문으로, 단어나 문장이 특정한 의미를 어떻게 가지며 그 의미가 어떤 방식으로 해석되는지 탐구한다. 의미론은 어휘 의미론과 구문 의미론으로 나뉘며, 단어의 사전적 의미와 문맥적 의미를 모두 다룬다. 의미론은 자연어 처리, 언어병리학, 어휘 발달 연구 등 다양한 분야에 활용된다. 2. 음운론 음운론은 언어의 소리 체계와 규칙을 연구하는 학문이다. 음운론은 음소와 운율적 특징에 초점을 맞추며, 자음 동화, 축약 등 소리 변화 현상을 분석한다. 음운론은 외국어 학습과 언어치료에 활용...2025.01.24
-
자연언어처리4공통형 7강까지 학습한 모델 알고리즘 중 하나를 적용한 논문에서 모델이 어떻게 사용되었는지 기술2025.01.261. BERT 모델 적용 논문 "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"에서 BERT 모델은 자연어 처리(NLP) 분야의 다양한 언어 이해 작업을 해결하기 위해 사용되었습니다. BERT는 문맥 이해, 단어의 다의성 해결, 사전 훈련과 미세 조정, 모델의 일반화 능력 향상 등의 문제를 다루고자 했습니다. 이를 위해 BERT는 양방향 문맥 처리, Masked Language Model, Next Sentence Prediction ...2025.01.26
-
딥러닝의 최신 동향: ChatGPT, Gemini, Lamma, Claude, Hyper Clovax 등2025.01.171. Gemini Gemini는 구글의 AI 연구팀이 개발한 차세대 언어 모델로, 인간 수준의 이해력과 자연스러운 대화를 목표로 하고 있습니다. Gemini는 다중 언어 지원, 컨텍스트 이해, 확장성 등의 특징을 가지고 있으며, 구글 검색 엔진, 음성 비서, 번역 서비스 등 다양한 애플리케이션에 적용되고 있습니다. 2. Lamma Lamma는 Meta(구 Facebook)의 AI 연구팀이 개발한 새로운 딥러닝 모델로, 텍스트 생성, 이미지 인식, 음성 인식 등 다양한 분야에서 활용될 수 있습니다. Lamma는 대규모 사전 학습, 적...2025.01.17
-
챗GPT 특징, 활용 가능성, 시사점 및 발전 방안2025.05.061. 챗GPT의 특징 챗GPT의 특징은 초거대 AI, 대화형 AI, 파인튜닝 및 다양한 언어 지원을 들 수 있다. 초거대 AI는 학습을 통해 도출된 값이 많을수록 성능이 좋아지며 타사 AI 모델보다 열 배 이상 많은 학습 값이 사용된다. 대화형 AI는 수억 건의 대화 데이터 학습을 통해 자연어 처리 및 언어 생성 기술을 활용하여 인간과 같은 대화를 나눌 수 있다. 파인튜닝은 미리 대량의 데이터로 학습된 GPT가 특정한 작업을 수행할 수 있도록 조정하여 원하는 대화 형식과 주제를 더 잘 이해하고 응답할 수 있다. 다양한 언어 지원은 ...2025.05.06
-
챗GPT의 올바른 이해와 활용방안2025.05.151. 챗GPT의 등장 챗GPT는 사용자가 대화창에 질문이나 요구 등 텍스트를 입력하면 그 맥락에 적절한 대화를 나누는 서비스로, 질문에 대한 답변은 물론 논문 작성, 번역, 노래 작사·작곡, 코딩 작업 등 광범위한 분야에서 유용하게 사용 가능한 인공지능이다. 챗GPT는 자연어의 이해 기술을 통해 사람과의 대화에서 등장하는 문장을 쪼개서 분석하고 이해하여 필요한 업무를 수행할 수 있게 되었다. 2. 챗GPT의 영향 챗GPT에 대해 긍정적인 태도를 보이는 사람들은 주로 챗GPT의 활용 가능성에 주목한다. 특히 교육계에서 챗GPT에 관해...2025.05.15
-
[인공지능] 인공지능(AI)의 진보와 미래 (알파고에서 Chat GPT까지)2025.05.101. 자연어 처리 모델의 진보 인공지능의 핵심적인 기술인 자연어 처리 모델은 지속적으로 발전해왔다. 과거에는 합성곱 신경망(CNN)과 순환신경망(RNN)이 주로 사용되었지만, 2017년 구글 딥마인드에서 발표한 트랜스포머(Transformer) 모델은 이들의 한계를 극복하며 자연어 처리 성능을 크게 향상시켰다. 트랜스포머는 어텐션 메커니즘과 병렬 계산을 통해 문장 내 단어들 간의 상호작용을 고려하고 효율적인 학습이 가능하게 했다. 이러한 발전은 챗GPT의 자연어 처리 능력 향상에 기여했다. 2. 생성형 인공지능(Generative ...2025.05.10