
총 76개
-
고려대학교 객체지향프로그래밍 A+ 기말고사 치팅시트2025.05.101. 프로그래밍 언어 프로그래밍 언어는 컴퓨터가 수행할 수 있는 모든 것을 설명할 수 있어야 하며, 프로그래머가 의도한 바를 정확히 표현할 수 있어야 합니다. 튜링 기계는 무한한 테이프, 읽기/쓰기/삭제 장치, 상태 테이블을 가지고 있으며 튜링 완전하거나 튜링 동등합니다. 실제 컴퓨터는 선형 한정 레지스터 기계(거의 만족)입니다. 대부분의 언어가 튜링 완전하기 때문에 문제가 되지 않습니다. 프로그래밍 언어는 오류 방지, 사용성 등의 기준을 만족해야 합니다. 2. 프로그래밍 패러다임 프로그래밍 패러다임은 좋은 프로그래밍 언어의 기준을...2025.05.10
-
ChatGPT 배경과 활용2025.05.051. ChatGPT 개요 ChatGPT는 OpenAI에서 개발한 대화형 인공지능 언어 모델입니다. 이 모델은 GPT-3.5 아키텍처를 기반으로 하며, 2021년 이전에 배운 대규모 데이터셋을 사용하여 학습되었습니다. 이 모델은 13억 개의 매개 변수를 가지며, 이는 GPT-3 모델에서 사용된 매개 변수의 약 116배에 해당합니다. 2. ChatGPT의 활용 ChatGPT는 인공지능 연구자들이 대화형 인공지능을 개발하는 데 필요한 자원을 제공합니다. 또한, ChatGPT는 챗봇, 자동 응답 시스템, 자동 번역 시스템 등 다양한 응용 ...2025.05.05
-
생성적 적대 신경망 (GAN)2025.05.091. 생성적 적대 신경망 (GAN) 생성적 적대 신경망(Generative Adversarial Network)은 2014년에 이안 굿펠로우와 그의 팀에 의해 처음 소개되었습니다. 이 모델은 딥러닝 분야에서 혁신적인 기술로 인정받고 있으며, 이미지 생성, 음성 합성, 자연어 처리 등 다양한 분야에서 활발하게 적용되고 있습니다. GAN은 기본적으로 생성자와 판별자라는 두 개의 신경망으로 구성되며, 서로 경쟁하며 성능을 향상시키는 특징을 갖고 있습니다. 생성자는 실제와 유사한 데이터를 생성하기 위해 노력하고, 판별자는 생성자가 생성한 ...2025.05.09
-
의료 문헌과 환자 기록의 자연어 처리를 통한 지식 추출2025.05.111. 자연어 처리(NLP)의 개념과 의의 자연어 처리(Natural Language Processing, NLP)는 인간의 언어를 기계가 이해하고 처리하는 기술로, 의료 분야에서는 의료 문헌과 환자 기록의 텍스트를 분석하는 데 사용됩니다. 의료 분야에서는 의료 전문가들이 최신 연구 결과나 진료 정보를 빠르게 얻고 활용하는 것이 중요하며, NLP는 이러한 지식 추출을 지원합니다. 2. 의료 문헌에서의 NLP 응용 NLP는 의료 논문, 저널, 연구 보고서 등의 의료 문헌에서 중요한 정보를 추출하고, 의료 지식을 확장하는 데 활용됩니다....2025.05.11
-
[R & E 활동 대회] 다중 연결 리스트(Multi-Linked List)를 이용한 자연어 처리 방법론 연구2025.05.121. 다중 연결 리스트(Multi-Linked List) 다중 연결 리스트(Multi-Linked List)는 단일 연결 리스트와 비슷한 구조이나 동적 할당(Dynamic allocation)과 노드 구조체를 이용하여 각 노드 간 연결이 다중으로 이루어지도록 한 자료 구조입니다. 여러 종류의 단어가 한 특성을 공유하여 다음 문장으로 연결되어야 하는 처리 구조를 이루어야 하므로 본 연구에서 이용한 자료 구조입니다. 2. 자연어 처리 본 연구에서는 신문 기사를 활용한 빅 데이터를 C언어로 구조화하여 단어 간의 상관관계를 파악하여 새로운...2025.05.12
-
인공지능을 이용한 채팅 기능 챗GPT에 대한 조사 및 느낀점2025.05.061. 챗GPT 챗GPT는 OpenAI에서 개발한 대화형 인공지능 언어모델입니다. 챗GPT는 인간과 자연어로 대화하는 것처럼 이전 대화 기록과 문맥을 파악하여 자연스러운 답변을 생성할 수 있습니다. 챗GPT는 Transformer라는 딥러닝 모델 아키텍처를 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해와 생성 능력을 향상시킵니다. 챗GPT는 대화 생성 능력이 뛰어나기 때문에, 챗봇, 가상 비서, 자연어 이해(NLU), 기계 번역(MT) 등의 분야에서 활용될 수 있습니다. 2. 챗GPT의 역사 및 배경 챗GPT 모델은 O...2025.05.06
-
트랜스포머 모델링2025.05.061. 트랜스포머 모델 트랜스포머는 어텐션만으로 구성된 신경망 모델로, RNN이나 CNN의 단점을 보완한 모델입니다. 트랜스포머는 어텐션 메커니즘을 사용하며, 단어를 동시에 고려할 수 있고 입력에 순서 정보가 없다는 특징이 있습니다. 트랜스포머 인코더는 멀티헤드 셀프 어텐션으로 구성되어 있으며, 트랜스포머 디코더는 마스크드 멀티헤드 셀프 어텐션을 사용합니다. 2. CNN의 문제점 CNN은 커널을 이용하기 때문에 이미지의 특징을 추출하는데 있어 국소적인 부분만을 고려하는 문제점이 있습니다. 3. RNN의 문제점 RNN은 시간의 흐름에 ...2025.05.06
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.161. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 한 가지 특정 작업을 수행하는 것을 목표로 하는 인공지능이며, 강한 인공지능은 인간의 지능과 비슷한 기능을 하는 것을 목표로 한다. 약한 인공지능은 미리 정해진 데이터와 알고리즘을 통해 최적의 결과를 만들어내는 것이 목표이지만, 강한 인공지능은 다양한 기능을 수행하고 새로운 문제를 해결하는 방법을 직접 찾는 것을 목표로 한다. 2. 기계학습의 특징 기계학습은 인공지능을 구현하는 방법 중 하나로, 빅데이터를 반복적으로 분석하여 데이터 내부의 규칙성과 패턴을 추출하고 이를 바탕...2025.05.16
-
인공지능(Artificial Intelligence)에 관하여 조사하여 설명하고 인공지능을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 인공지능의 정의와 역사 인공지능(Artificial Intelligence, AI)은 인간의 지능을 모방하여 학습하고 문제를 해결하며 결정을 내리는 컴퓨터 시스템을 의미합니다. 인공지능의 역사는 1950년대 앨런 튜링(Alan Turing)의 논문 'Computing Machinery and Intelligence'에서 시작되었으며, 1956년 다트머스 회의(Dartmouth Conference)에서 인공지능이라는 용어가 처음 사용되었습니다. 2. 인공지능의 주요 기술과 접근 방법 인공지능에는 기계 학습, 심층 학습, 자연어 ...2025.01.25
-
입력장치와 출력장치에 대한 차이점과 음성인식장치의 특징2025.01.171. 입력장치와 출력장치의 정의 및 기능 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하며, 키보드, 마우스, 스캐너 등이 대표적인 예이다. 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 하며, 모니터, 프린터, 스피커 등이 대표적이다. 입력장치와 출력장치는 상호 보완적인 역할을 하여 사용자가 컴퓨터를 효율적으로 사용할 수 있게 한다. 2. 입력장치와 출력장치의 차이점 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하는 반면, 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 한다. 이러...2025.01.17