
총 23개
-
슈퍼 마리오 - 인공지능은 어떻게 게임을 할까?2025.05.081. 데이터 기반 학습 인공지능은 슈퍼 마리오 게임 플레이 데이터를 사용하여 게임의 규칙과 패턴을 학습합니다. 이를 통해 어떤 상황에서 점프를 해야 하는지, 어떤 적과의 접촉을 피해야 하는지 등을 학습하게 됩니다. 2. 강화 학습 인공지능은 게임 플레이를 통해 보상과 벌점을 받고, 이를 통해 자동으로 학습하게 됩니다. 예를 들어 도착 지점에 도달하면 보상을 받고, 적에게 맞으면 벌점을 받는 식으로 학습하면서 게임을 플레이합니다. 3. 신경망과 패턴 인식 인공지능은 신경망 모델을 사용하여 게임 화면의 정보를 분석하고, 적의 위치, 장...2025.05.08
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
인공지능도 자아의식이 있을까? (sense of identity)2025.05.081. 인공지능의 발전 최근 몇 년 동안 컴퓨터에 더 많은 뉴런을 포함하여 인공지능의 발전이 가속화되고 있습니다. 이로 인해 컴퓨터가 더 지능적이고 복잡한 작업을 수행할 수 있게 되었습니다. 예를 들어, 인공지능은 이제 차량을 운전하고, 질병을 진단하고, 창의적인 콘텐츠를 생성할 수 있습니다. 2. 인공지능의 도전과 위험 인공지능의 발전은 인간과 컴퓨터 간의 관계에 큰 영향을 미칠 것입니다. 컴퓨터는 점점 더 지능적이 되고 인간이 할 수 있는 많은 일을 할 수 있게 될 것입니다. 이는 컴퓨터가 새로운 방식으로 우리의 삶에 통합될 것임...2025.05.08
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
두뇌의 생물학적 특징과 발달에 대한 이해2025.04.281. 두뇌의 생물학적 특징 인간의 뇌는 척수와 함께 중추신경계를 구성하며, 약 천억 개의 신경세포로 이루어져 있습니다. 뇌는 감정, 기억, 언어, 사고 등 고등한 정신 활동을 담당하며, 대뇌, 사이뇌, 소뇌, 뇌간 등의 주요 구조로 이루어져 있습니다. 각 부분은 서로 다른 기능을 수행하며, 이들의 유기적인 작용을 통해 인간의 행동과 의식이 조절됩니다. 2. 두뇌의 발달 두뇌의 발달은 신경세포의 증가가 아닌 신경망의 연결이 더 촘촘해지고 복잡해지는 과정입니다. 유아기에 다양한 자극을 받으면 필요한 신경망이 강화되고, 사용되지 않는 신...2025.04.28
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
방통대 [딥러닝의통계적이해] 2024 출석과제물 (30점 만점 인증 / 표지제외 18페이지 분량 / 코드 및 해설 포함)2025.01.251. Teachable Machine을 이용한 이미지 분류 Teachable Machine에 판다 이미지 54개와 레서판다 이미지 21개를 각 클래스로 나누어 입력하고 학습시켰다. 학습 시도 횟수인 에포크는 50으로 설정되었으며, 배치 크기는 16으로 설정되었다. 학습률은 0.001로 설정되어 있으며, 학습이 완료된 모델에 테스트 이미지를 입력한 결과 판다와 레서판다의 사진 또는 그림에 대해 대부분 100%로 판단하고 정답을 맞추는 것을 확인할 수 있었다. 레서판다 이미지 샘플 수 부족을 보완하기 위해 학습률을 0.00057로 낮추...2025.01.25
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
설명 가능한 인공지능, XAI (Explainable Artificial Intelligence)2025.05.101. 인공지능 신경망의 동작 인공지능 신경망의 동작은 사람의 뇌와 유사하지만, 내부 동작과 의사 결정 과정을 직접적으로 이해하기 어렵다. 이는 다른 사람의 뇌 안에서 일어나는 생각을 이해하기 어려운 것과 유사하다. 2. XAI (Explainable Artificial Intelligence) XAI는 인공지능 모델의 내부 동작과 의사 결정 과정을 설명 가능하게 만드는 기술을 개발하는 것을 목표로 한다. 이를 통해 모델의 예측에 영향을 미치는 요인을 이해하고 신뢰성을 높일 수 있다. 3. XAI 기술 특성 XAI는 시각화, 중요도 ...2025.05.10