총 87개
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
아마존 웹 서비스의 클라우드 컴퓨팅 활동 요약2025.05.151. 아마존 클라우드 서비스 종류와 기능 아마존 웹 서비스는 전 세계 클라우드 컴퓨팅 시장에서 압도적인 1위를 차지하고 있는 서비스로, 2006년에 설립되었다. 아마존 웹 서비스는 컴퓨팅, 스토리지, 데이터베이스, 개발자 도구, 보안, 관리 및 거버넌스, 분석 등 다양한 분야의 클라우드 서비스를 제공하고 있다. 이러한 서비스들은 API로 제어할 수 있으며, 자동화를 통해 비용을 최적화할 수 있다는 장점이 있다. 2. 아마존 클라우드 서비스 목록 아마존 웹 서비스에서 제공하는 주요 클라우드 서비스는 다음과 같다: 컴퓨팅(Amazon ...2025.05.15
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.04.301. 인공지능의 개념 인공지능이란 인간의 지능을 갖추어 인간의 학습 능력을 바탕으로 추론, 지각, 이해를 수행하는 컴퓨터 프로그램 기술을 의미한다. 약인공지능과 강인공지능의 두 가지 형태로 분류되며, 인간의 지시 여부에 따라 구분된다. 약인공지능은 인간이 요구하는 특정 분양의 일을 인간의 지시에 따라 수행하는 인공지능이며, 강인공지능은 인간의 사고와 정보처리 과정을 구현하기 위한 것으로 현재로서는 요원한 영역이다. 2. 머신러닝과 딥러닝 기계학습 또는 머신러닝은 인공지능을 구현하는 방법의 하나로, 알고리즘을 통해 데이터를 분석하고 ...2025.04.30
-
세종대학교 소프트웨어 특강 과제12025.05.101. Linear Regression 주어진 데이터에 대해 가장 잘 맞는 선형 회귀 모델을 찾았습니다. Gradient Descent 알고리즘을 사용하여 모델의 최적 매개변수를 구했으며, 이를 통해 입력 x=15에 대한 y 값을 예측할 수 있었습니다. 또한 회귀선을 데이터 포인트와 함께 시각화하였습니다. 2. Logistic Regression 두 개의 입력 변수(Petal_Length, Petal_Width)를 사용하여 Iris versicolor와 Iris virginica 두 클래스를 구분하는 로지스틱 회귀 모델을 구현하였습니...2025.05.10
-
정보통신망4C 에지 컴퓨팅 Edge Computing 조사설명하고 에지 컴퓨팅을 위해 활용될 수 있는 정보통신기술에 관하여 서술하시오2025.01.251. 에지 컴퓨팅 정의 및 필요성 에지 컴퓨팅(Edge Computing)은 중앙 데이터 처리 시스템에서 데이터를 처리하는 대신, 데이터를 생성하는 위치 또는 가까운 위치에서 데이터 처리 및 분석을 수행하는 분산 컴퓨팅 기술입니다. 에지 컴퓨팅은 대역폭 절감, 데이터 프라이버시 보호, IoT 기기와의 통합, 네트워크 지연 감소 등의 장점이 있어 실시간 응용 프로그램, 산업 자동화, 스마트 시티 등 다양한 분야에서 필요성이 높아지고 있습니다. 2. 에지 컴퓨팅 장점과 문제점 에지 컴퓨팅의 주요 장점은 낮은 대기 시간, 대역폭 절감, ...2025.01.25
-
4차 산업혁명과 알고리즘(수학)2025.01.171. 4차 산업혁명 최근 인공지능 분야에 놀라운 성과가 나타나면서 인공지능은 미래의 일이 아니라 현실이 되고 있다. 그것은 빅데이터의 출현과 기계 스스로가 학습할 수 있는 '딥러닝(deep learning)'이라는 알고리즘의 개발 덕분이다. 알고리즘은 제 4차 산업혁명의 기초 작업으로 작용하고 있으며, 알고리즘을 안다는 것은 제 4차 산업혁명에 관한 이해도를 높이는 데 도움이 될 것이다. 2. 알고리즘 알고리즘이란 컴퓨터에서 쓰이는 용어로 어떤 문제의 해결을 위하여, 입력된 자료를 토대로 하여 원하는 출력을 유도하여 내는 규칙의 집...2025.01.17
-
컴퓨터공학과 프로젝트, 보고서 주제 추천2025.01.101. 머신러닝/인공지능 프로젝트 이미지 분류, 자연어 처리, 음성 인식 등과 같은 머신러닝 및 딥러닝 알고리즘을 활용한 프로젝트를 수행해볼 수 있다. 예를 들어, 손으로 쓴 숫자 인식, 감정 분석, 스팸 필터링 등의 주제를 다룰 수 있다. 2. 웹 개발 프로젝트 웹 애플리케이션 개발을 통해 프론트엔드와 백엔드 기술을 익힐 수 있다. 예를 들어, 블로그 플랫폼, 전자 상거래 웹사이트, 온라인 게임 등을 만들어 볼 수 있다. 3. 모바일 앱 개발 안드로이드나 iOS 플랫폼에서 모바일 앱을 개발하는 프로젝트를 수행해볼 수 있다. 예를 들...2025.01.10
-
머신러닝 출석수업 만점 과제2025.01.251. 머신러닝 머신러닝은 인공지능의 한 분야로, 데이터를 이용하여 알고리즘을 학습시켜 문제를 해결하는 기술입니다. 이 과제는 머신러닝 수업의 출석수업 과제물로, 코드 작성과 컴파일 결과를 포함하고 있습니다. 1. 머신러닝 머신러닝은 인공지능 기술의 핵심 분야로, 데이터를 기반으로 학습하고 예측하는 능력을 갖추고 있습니다. 이를 통해 다양한 분야에서 효율적이고 정확한 의사결정을 내릴 수 있습니다. 특히 의료, 금융, 제조업 등 많은 산업 분야에서 머신러닝 기술이 활용되고 있으며, 앞으로도 그 활용 범위가 더욱 확대될 것으로 예상됩니다...2025.01.25
-
영화 '머니볼'을 통해 본 일상생활에서의 통계학 적용2025.01.041. 통계학 통계학은 다양한 분야에서 활용되며, 기상예측, 선거 분석, 기업의 의사결정 등에 활용된다. 통계학은 수학적 분석을 통해 현상을 객관적으로 이해하고 예측할 수 있게 해준다. 또한 데이터 분석을 통해 소비자 니즈를 파악하고 만족도를 높이는 데 기여한다. 2. 일상 생활 속 통계학 적용 일상생활에서 통계학은 의견의 대표성 판단, 6시그마 기법을 통한 품질 관리, 빅데이터 분석 등에 활용된다. 통계학 지식을 바탕으로 데이터를 분석하면 일상에서 접하는 정보를 다양한 관점에서 해석할 수 있다. 통계학은 4차 산업혁명 시대의 데이터...2025.01.04
-
AI의 등장과 영향, 산업 분야별 적용 사례 및 전망2025.05.161. 새로운 산업 혁명, AI의 시작 ChatGPT는 인간과 유사한 텍스트를 생성하고 광범위한 질문에 높은 정확도로 응답할 수 있다는 점에서 호평을 받고 있습니다. 의료, 금융, 고객 서비스를 포함한 많은 산업은 다양한 프로세스를 자동화할 수 있고 개선할 수 있는 잠재력에 의해 ChatGPT를 채택하기 시작했습니다. 2. 생성형 AI 생성형 AI란 머신러닝 알고리즘을 통해 학습 데이터를 기반으로 새로운 콘텐츠를 만드는 기술입니다. 이 생성형 AI가 바로 ChatGPT입니다. 머신러닝은 컴퓨터가 주어진 데이터로부터 자체 학습을 하여 ...2025.05.16