
총 38개
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.041. 인공지능 인공지능은 4차 산업혁명의 핵심 요소로, 그동안 인간의 고유 능력이었던 학습, 추론, 지각, 탐색 등의 능력을 인공적인 컴퓨터 기술로 구현한 것을 의미합니다. 인공지능은 사물인터넷, 클라우드 컴퓨팅, 빅데이터와 함께 4차 산업혁명의 주요 기술 및 연구 분야로 자리잡고 있으며, 일상생활과 경제 활동을 지원하는 중요한 기술로 인식되고 있습니다. 2. 데이터베이스의 활용 데이터베이스는 정형화된 데이터를 저장하고 관리하는 시스템으로, 데이터 마이닝을 통해 정보를 추출하고 가공할 수 있습니다. 또한 비/반정형 텍스트 데이터에서...2025.01.04
-
전자상거래 관련 활용 사례 및 실제 적용 기술 조사하기2025.01.111. 전자상거래 개요 전자상거래는 '재화 또는 용역을 거래하는 데 있어서 그 전부나 일부가 전자 문서에 의해 처리되는 방법으로 이루어지는 상행위'를 말합니다. 전자상거래는 고객 지원, 광고와 마케팅, 지불 등 모든 활동을 포함하며 인터넷에서 세계의 생산자와 소비자가 만나 결제할 수 있는 시스템입니다. 전자상거래는 기업이 제품이나 서비스를 온라인에서 판매할 수 있는 환경을 제공하고, 소비자에게는 인터넷을 통해 이를 검색하고 구매할 수 있는 기능을 제공합니다. 2. 전자상거래 활용 사례 대표적인 전자상거래 활용 사례로는 온라인 쇼핑 플...2025.01.11
-
Big Data Data Mining 데이터 마이닝2025.01.121. Data Mining 데이터 마이닝은 방대한 데이터 속에서 유용한 상관관계를 발견하고 추출하여 의사결정에 이용하는 과정입니다. 정보기술의 발달과 비즈니스 요구에 의해 등장했으며, 과열된 기업경쟁과 다양한 고객 요구에 효과적이고 빠른 기업경쟁력을 제공합니다. 데이터 마이닝 이전에는 한정된 자료와 전공 서적 중심의 연역적 방법을 사용했지만, 데이터 마이닝 시대에는 대용량 자료와 실무 중심의 귀납적 방법을 사용합니다. 2. Data Mining 기법 데이터 마이닝 기법에는 의사결정나무, 신경망 네트워크, K-평균 군집화, OLAP ...2025.01.12
-
고객관계관리(CRM)의 정의, 구성 및 기대효과2025.01.171. 고객관계관리(CRM) 고객관계관리란 고객정보를 종합적으로 수집해 해당 정보를 활용해 개별 고객의 특성이나 요구를 파악한 뒤 개별 고객에 맞춘 마케팅 활동을 수행하는 것을 말한다. CRM은 크게 '프론트오피스 CRM 시스템'과 'E-CRM 시스템'으로 구분할 수 있다. CRM의 주요 기능은 판매, 마케팅, 고객서비스, 업무운영 관리 등이 있다. 2. CRM 시스템 구성 CRM 시스템 구성에 있어 가장 중요한 정보 기술은 데이터베이스와 데이터 웨어하우스이다. 데이터 웨어하우스는 개별 사업정보시스템에 흩어져 있는 고객 관련 데이터를...2025.01.17
-
고객관계관리 정의 및 특성, CRM 실행안 분석2025.01.171. 고객관계관리 정의 및 특성 CRM은 고객과의 장기적 관계를 구축하고 고객관리 요소를 정리·통합해 기업 경영 성과를 개선하기 위한 새로운 경영방식이다. CRM은 장기적으로 고객 수익성을 극대화하는 것을 목표로 하며, 다양한 고객 정보를 수집, 저장, 분석하여 적시에 적절한 고객에게 효과적인 채널을 통해 제품이나 서비스를 제공한다. 2. CRM의 구성요소 CRM의 구성요소에는 프로세스와 기술적 관점이 있다. 프로세스 관점에서는 신규고객 유치, 기존고객 관리, 고객 수명주기 관리 등이 포함된다. 기술적 관점에서는 데이터웨어하우스, ...2025.01.17
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
대학 부설 한국어 어학당을 AI로 분석 적용(인공지능과 데이터마이닝 과제)2025.05.141. 어학연수생 유치 예측 마케팅 기술을 활용하여 과거 10년간의 모집 인원 데이터를 분석하고 국가별, 지역별, 성별, 연령별, 성취도, 모집기관별 등의 데이터를 활용한 CRM 데이터를 구축할 수 있습니다. 이를 통해 시기에 맞는 맞춤형 마케팅 정보를 제공할 수 있습니다. 또한 모집 프로세스에 AI를 도입하여 서류 검토, AI 인터뷰, 챗봇 상담 등을 자동화함으로써 업무 프로세스를 개선하고 효율성을 높일 수 있습니다. 2. 교육시스템 개선 AI 학습 플랫폼을 개발하여 학생들이 본국에서 입국 전부터 사전 학습을 할 수 있도록 하고, ...2025.05.14