총 40개
-
전산개론_빅데이터의 정의와 특징 그리고 분석기술을 조사하여 제출하시오.2025.05.021. 4차 산업혁명 4차 산업혁명의 특징은 초연결성, 융합, 초지능, 노동력 위기, 심각한 불균형과 양극화 현상 등 5가지로 분류할 수 있다. 이러한 4차 산업혁명의 배경 속에서 빅데이터의 개념, 특징, 분석기술이 등장하게 되었다. 2. 빅데이터의 개념 빅데이터는 많은 양의 데이터로, 속도가 빠르고 다양한 종류의 데이터를 포함하고 있다. 기존의 관리 방법이나 분석 체계로는 처리하기 어려운 방대한 양의 데이터 집합을 저장, 수집, 분석, 관리, 시각화하는 정보통신 기술 분야라고 볼 수 있다. 3. 빅데이터의 특징 빅데이터의 대표적인 ...2025.05.02
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
빅데이터와 통계학_탐구보고서_확통(세특)2025.01.111. 빅데이터와 통계학 빅데이터는 기존의 데이터 베이스 관리도구의 데이터 수집, 저장, 관리, 분석의 역량을 넘어서는 대량의 정형 또는 비정형의 데이터 세트 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 정보 통신 기술의 발달, 빅데이터에 대한 효율적인 저장 및 분석의 가능, 국가간 기술 격차 감소로 인해 빅데이터에 대한 관심이 높아지고 있다. 의료산업, 맞춤형 마케팅, 제조업 등 다양한 분야에서 빅데이터가 응용되고 있다. 따라서 빅데이터 시대에 가치를 추출하고 결과를 분석하는 분야와 밀접한 관련이 있는 ...2025.01.11
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.041. 인공지능 인공지능은 4차 산업혁명의 핵심 요소로, 그동안 인간의 고유 능력이었던 학습, 추론, 지각, 탐색 등의 능력을 인공적인 컴퓨터 기술로 구현한 것을 의미합니다. 인공지능은 사물인터넷, 클라우드 컴퓨팅, 빅데이터와 함께 4차 산업혁명의 주요 기술 및 연구 분야로 자리잡고 있으며, 일상생활과 경제 활동을 지원하는 중요한 기술로 인식되고 있습니다. 2. 데이터베이스의 활용 데이터베이스는 정형화된 데이터를 저장하고 관리하는 시스템으로, 데이터 마이닝을 통해 정보를 추출하고 가공할 수 있습니다. 또한 비/반정형 텍스트 데이터에서...2025.01.04
-
미국센서스 데이터 수입고저분류 분석2025.11.111. 데이터마이닝 고려대학교 데이터마이닝 수업에서 다루는 주제로, 대규모 데이터셋에서 패턴과 의미 있는 정보를 추출하는 기법입니다. 미국센서스 데이터를 활용하여 수입 수준을 분류하는 실제 사례를 통해 데이터마이닝의 실무 적용 방법을 학습합니다. 2. 미국센서스 데이터 미국 인구조사국에서 수집한 대규모 인구통계 데이터로, 개인의 인구통계학적 정보, 경제 상태, 교육 수준 등 다양한 속성을 포함합니다. 이 데이터는 머신러닝 및 분류 모델 개발의 벤치마크 데이터셋으로 널리 활용됩니다. 3. 수입고저분류 개인의 연간 수입을 특정 기준에 따...2025.11.11
-
관광산업의 비즈니스 인텔리전스 기술 도입 수익창출 방안2025.11.111. 비즈니스 인텔리전스(BI) 기술 비즈니스 인텔리전스는 조직이 보유한 데이터를 기반으로 원활한 의사결정을 위한 프로세스이다. 1950년대 문서 작성에서 시작하여 1960년대 조직 간 정보 공유 시스템으로 발전했고, 1980년대 컴퓨터 발전으로 기업 의사결정 프로세스로 본격화되었다. 현재 BI는 데이터웨어하우스에 수집된 내외부 데이터를 OLAP, 데이터마이닝 등으로 처리하여 미래를 예측하고 기업 의사결정을 지원한다. 품질관리, 시장추세 분석, 부정행위 방지 등을 통해 조직의 효율적 운영을 지원한다. 2. COVID-19이 관광산업...2025.11.11
-
CRM 관리에서 신규고객 유치전략과 기존고객 유치전략2025.01.171. CRM 기술적 구성요소 CRM을 구성할 때 가장 중요한 정보 기술은 데이터베이스와 데이터 웨어하우스이다. 데이터웨어하우스는 개별 사업정보시스템에 흩어져 있는 고객 관련 데이터를 통합해 고객 중심 데이터를 정리하는 개념으로 분석정보와 보고서 계산이 용이하다. OLAP 기술은 고객, 제품, 구매 행동, 서비스 이력 등 다양한 측면을 분석할 수 있으며, 데이터마이닝은 CRM 관련 프로젝트의 필수적인 부분이다. 2. 신규고객 유치전략 CRM은 이미 내부에서 가지고 있는 데이터베이스를 기준으로 의사결정을 내린다. 그러므로 신규고객을 유...2025.01.17
-
고객관계관리 정의 및 특성, CRM 구성요소와 실행안 분석2025.01.171. 고객관계관리(CRM) 정의 및 특성 CRM은 기업의 경영 성과를 향상시키기 위해 장기적인 고객 관계를 구축하고 고객 관리 요소를 체계화하며 통합하는 새로운 경영 방식이다. CRM은 고객 정보 수집, 분석, 시기적절한 제품/서비스 제공, 다양한 기능 통합 등을 통해 고객 관계 향상, 가치 증대, 비용 절감, 프로세스 효율성 향상을 목표로 한다. 2. CRM의 구성요소 CRM의 주요 구성요소는 데이터 웨어하우스, OLAP, 데이터 마이닝 등 기술적 관점과 고객 데이터 통합, 고객 세분화, 맞춤형 마케팅 등 프로세스 관점이 있다. ...2025.01.17
-
의사결정의 구성요소와 계량적 방법2025.01.171. 의사결정의 구성요소 의사결정에는 '무엇을', '언제', '어디서', '어떻게', '누가'와 같은 주요 구성요소가 있다. 이러한 요소들을 고려하여 의사결정을 내리는 것이 중요하다. 2. 의사결정나무 의사결정나무는 분류와 예측을 위해 널리 사용되는 방법으로, 결과에 대한 설명이 쉽고 이해하기 쉬운 장점이 있다. 의사결정나무 알고리즘에는 CART, CHAID, C4.5, C5.0 등이 있으며, 이들은 공통적인 구조를 가지고 있다. 3. 의사결정나무의 고려사항 의사결정나무 알고리즘에서는 독립변수의 수, 최적 분리 방법, 종료 규칙 등...2025.01.17
-
고객관계관리(CRM)의 정의, 구성 및 기대효과2025.01.171. 고객관계관리(CRM) 고객관계관리란 고객정보를 종합적으로 수집해 해당 정보를 활용해 개별 고객의 특성이나 요구를 파악한 뒤 개별 고객에 맞춘 마케팅 활동을 수행하는 것을 말한다. CRM은 크게 '프론트오피스 CRM 시스템'과 'E-CRM 시스템'으로 구분할 수 있다. CRM의 주요 기능은 판매, 마케팅, 고객서비스, 업무운영 관리 등이 있다. 2. CRM 시스템 구성 CRM 시스템 구성에 있어 가장 중요한 정보 기술은 데이터베이스와 데이터 웨어하우스이다. 데이터 웨어하우스는 개별 사업정보시스템에 흩어져 있는 고객 관련 데이터를...2025.01.17