
총 60개
-
2023년 2학기 통계로세상읽기 출석수업 중간과제 리포트 30점 만점2025.01.251. 국가통계의 이용 국가통계(공식통계)는 개인, 기업, 정부 측면에서 다음과 같이 활용될 수 있다. 개인은 일상생활에서 합리적 의사결정을 위해 활용할 수 있고, 기업은 시장동향, 소비자 행동, 인구통계학적 정보 수집을 통해 전략 수립의 기본 자료로 활용할 수 있다. 국가는 국가 현황 파악, 정책 기획/수립/결정을 위한 기초자료로 활용하며, 법률 및 규제 개선, 예산 편성 등 다양한 분야에 활용된다. 2. 통계학의 역할 통계학은 1) 자료 수집, 2) 자료 요약/설명, 3) 자료를 토대로 과학적 결론 도출의 3가지 역할을 한다. 자...2025.01.25
-
경영통계학_이산확률분포에 대하여 요약하여 정리하시오. 이항분포에 대한 정리, 초기하분포에 대한 정리, 포아송분포에 대한 정리2025.05.121. 이산확률분포 이산확률분포는 이산확률변수가 가지고 있는 확률분포를 말한다. 확률분포는 어떠한 확률변수가 특정값을 가질 수 있는 확률을 나타내며, '이산'이라는 말이 붙는 것은 확률변수가 가질 수 있는 값이 특정 제한된 개수(자연수 부분 집합)로 구성된다는 것을 의미한다. 본고에서는 이항분포, 초기하분포, 포아송분포에 대해 살펴보고자 한다. 2. 이항분포 이항분포는 베르누이 시행 결과를 여러 개 한 뒤에 그 합들을 변수값으로 갖는 확률변수의 분포를 말한다. 이때 이항분포에서 나오는 변수값이 이항확률변수라고 한다. 이항확률변수를 이...2025.05.12
-
이산확률분포: 이항분포, 포아송분포, 초기하분포의 특징 및 예시2025.05.091. 이산확률분포 확률분포는 가능한 모든 확률변수와 이것이 일어날 확률을 나타낸 것을 말한다. 이산확률분포는 확률변수 X가 가질 수 있는 값이 유한 집합이거나 가산집합일때 확률변수 X에 대응하는 확률분포이다. 즉, 확률변수 X가 1,2,3,4, … 이나 2,4,6,8,… 등과 같이 하나씩 셀 수 있는 값을 취하는 것을 말한다. 2. 이항분포 이항분포는 연속되는 n번의 독립적 시행에서 각각의 시행의 확률이 p를 가질 때의 분포이며, 이러한 시행을 베르누이 시행이라 말할 수 있다. 이항분포는 시행횟수(n)이 고정되어 있고, 각 시행에서...2025.05.09
-
(A+자료)경영통계학 이산확률분포와 연속확률분포를 정의한 후, 두 확률분포의 차이점을 사례를 들어 설명하시오2025.01.171. 확률변수와 확률분포 확률변수란 실험 결과를 수치로 표현하는 방법이며 결괏값에 따라 이산확률변수와 연속확률변수로 구분됩니다. 확률분포는 이 확률변수가 특정한 값을 가질 확률을 나타내는 함수로 만든 것입니다. 확률분포는 확률변수가 어떤 종류의 값을 가지는가에 따라서 크게 이산확률분포와 연속확률분포 중 하나에 속하게 됩니다. 2. 이산확률분포의 정의 이산확률분포란 이산확률변수가 가지는 확률분포를 의미합니다. 이산확률분포는 확률변수가 가질 수 있는 값의 개수가 여러 개 있다는 의미이고 산발적인 값을 나타냅니다. 자주 사용되는 이산확률...2025.01.17
-
투자론-투자 결정시 고려해야 할 요인으로 수익률과 위험2025.05.011. 수익률 수익률이란 어떠한 주어진 투자의 기간 동안에 발생한 투자수익률을 의미하는 것과 동시에 보유 기간 수익률이라고도 표현하기도 합니다. 수익률은 어떠한 투자를 하였을 때 벌어들이는 수익금들을 투자금으로 나눈 비율을 말합니다. 예를 들면 A라는 주식을 100만원에 구입한 후 1만원씩 배당받고 이것을 다시 110만원에 팔았다고 가정해보자면, 이때 배당금의 1만원에 주식 매매차익인 10만원을 합쳐 11만원을 100만으로 나뉘어진 값이 11%가 A라는 주식에 투자수익률이라고 합니다. 그리고 정부가 발행한 채권인 100만원을 구입하여...2025.05.01
-
연속확률분포에 대한 요약2025.01.031. 확률밀도함수 확률밀도함수는 주어진 변량이 정해진 구간 내에 존재할 확률을 나타내는 함수입니다. 실험적으로 얻어진 한정된 샘플에 의해 정의되며, 전체 샘플 수에서 이산화된 구간 내 사건이 발견될 확률을 히스토그램으로 표현합니다. 확률밀도함수는 자료동화에 활용될 수 있으며, 시계열 데이터의 통계적 특성 파악에도 도움이 됩니다. 2. 정규분포 정규분포는 연속확률분포의 하나로, 가장 중요하고 응용이 많은 분포입니다. 정규분포는 종 모양의 형태를 가지며, 평균을 중심으로 좌우 대칭을 이룹니다. 정규분포는 자연현상, 시험 성적 등 다양한...2025.01.03
-
확률이론에 대하여 요약하여 정리하시오2025.05.011. 확률의 공준과 확률분포 확률의 공준은 모든 확률 이론의 기본적인 전제가 된다. 공준 1은 표본공간에 속하는 모든 원소의 확률값이 0과 1 사이라는 것이며, 공준 2는 표본공간 내 어떤 사상 E가 발생할 확률은 사상 E가 속하는 원소들의 확률을 모두 더한 것과 같다는 것이다. 공준 3은 표본공간이 발생할 확률은 1이며 어떤 사상도 발생하지 않을 확률은 0이라는 것이다. 2. 확률법칙 확률에는 덧셈 법칙, 여 확률의 법칙, 곱셈 법칙이 성립한다. 덧셈 법칙은 표본공간 내 여러 사상 중 적어도 하나 이상의 사상이 발생할 확률은 두 ...2025.05.01
-
이산확률분포와 연속확률분포의 정의와 차이점2025.01.111. 이산확률분포의 정의와 특징 이산확률분포는 이산형 변수를 다루는 확률분포로, 이산확률변수의 값이 특정한 확률로 발생하는 현상을 모델링하는 데 사용된다. 이산확률분포의 확률질량함수는 확률변수가 특정한 값일 때 그 확률을 나타내며, 누적분포함수는 확률변수가 특정한 값보다 작거나 같은 경우의 확률을 누적해서 나타낸다. 이산확률분포의 예시로는 이항분포, 포아송분포, 기하분포 등이 있다. 2. 연속확률분포의 정의와 특징 연속확률분포는 이산확률분포와는 달리 연속적인 확률 변수에서 발생하는 확률을 나타내는데 사용된다. 이를 위해 확률밀도함수...2025.01.11
-
국가통계(공식통계)의 이용과 통계학의 역할2025.01.111. 국가통계의 이용 국가통계는 국가에서 일반 기관에서 진행하기 어려운 다양한 부문의 데이터를 수집, 분석하여 만든 통계로, 개인, 기업, 정부 등 다양한 주체에서 활용할 수 있다. 개인은 자산 관리, 소비 예산 계획, 취업 결정 등에 활용할 수 있고, 기업은 소비자 분석, 가격 정책 수립, 경영 전략 수립 등에 활용할 수 있다. 정부는 정책 개발, 사회 복지 정책 수립, 사고 예방 등에 활용할 수 있다. 2. 통계학의 역할 통계학은 데이터를 수집하고 분석하여 유용한 결과를 도출하는 학문으로, 다양한 분야에서 문제 해결과 결정을 돕...2025.01.11
-
이산확률분포와 연속확률분포의 차이점2025.01.171. 이산확률분포 이산확률분포에는 베르누이분포, 이항분포, 초기하분포, 포아송분포 등이 있습니다. 이산 확률분포는 확률변수가 셀 수 있는 유한한 값을 가지며, 각각의 값들 사이에 빈 곳이 있습니다. 주사위를 던지거나 동전을 던지는 행위가 대표적인 이산확률분포의 사례입니다. 2. 연속확률분포 연속확률분포에는 균등분포, 지수분포, 감마분포, 베타분포 등이 있습니다. 연속 확률분포는 확률변수가 무한한 값을 가질 수 있으며, 변수가 정해진 범위 안에서 모든 실수의 값을 가질 수 있습니다. 사람의 키나 물건의 무게가 대표적인 연속확률분포의 ...2025.01.17