
총 58개
-
중앙대학교 전자회로설계실습 결과보고서 9 - 피드백 증폭기 (Feedback Amplifier)2025.01.241. Series-Shunt 피드백 증폭기 실험에서 Series-Shunt 피드백 증폭기 회로를 구현하고 입력전압의 변화에 따른 출력전압의 변화를 측정하였다. 입력전압이 증가함에 따라 출력전압이 약 2의 기울기로 증가하는 것을 확인하였으며, 입력저항, 부하저항, 전원 전압의 변화에도 이득이 약 2V/V로 일정함을 확인하였다. 이를 통해 설계한 Series-Shunt 피드백 증폭기 회로의 입출력 관계식이 Av = Rf/Ri와 같음을 확인하였다. 2. Series-Series 피드백 증폭기 실험에서 Series-Series 피드백 증폭...2025.01.24
-
중앙대 전자회로설계실습 결과보고서92025.01.121. Series-Shunt 피드백 증폭기 실습 4.1(A), (B)에서 Series-Shunt 피드백 증폭기의 입력저항을 1㏀로, 부하저항을 1㏀ 저항으로 제작하여 입력전압을 0V부터 6V까지 1V씩 증가시키며 출력전압을 측정한 후, 입력저항 10㏀, 부하저항 100Ω으로 교체하여 같은 방식으로 입력전압을 증가시키며 출력전압을 측정하고 두 측정값을 비교해 보았다. 두 실습의 출력전압을 비교해본 결과, 입력저항과 부하저항을 바꾸었을 때 gain과 출력전압의 차이가 아주 작았다. 이것을 통해, 식 × 에서 알 수 있듯...2025.01.12
-
건국대 물및실2 12주차 코일의 자기장 측정 결과레포트2025.01.181. 헬름홀츠 코일 헬름홀츠 코일 배치에서의 자기장의 공간적 분포상태를 디지털 가우스 메터를 사용하여 측정하였다. 맥스웰 방정식과 비오-사바르 법칙을 이용하여 이론적으로 자기장 밀도를 계산하고, 실험 결과와 비교하였다. 솔레노이드와 헬름홀츠 코일에서는 실험 값과 이론 값의 오차율이 각각 1.2%, 1.9%로 신뢰할 수 있는 실험이 진행되었지만, 단일 코일에서는 오차율이 278%로 신뢰할 수 없는 실험이었다. 오차 발생 원인으로는 도선 저항, 일정하지 않은 전류, 유효 숫자 사용 등이 지적되었다. 2. 자기장 측정 실험에서는 디지털 ...2025.01.18
-
키르히호프의 법칙 실험 보고서2025.01.051. 키르히호프의 법칙 이번 실험을 통해 키르히호프의 제1법칙(전류법칙)과 제2법칙(전압법칙)을 확인할 수 있었으며 키르히호프의 법칙들을 실험을 통해서 증명할 수 있었다. 즉, 키르히호프의 법칙을 이용하여 한 분기점에 들어오는 전류의 양과 나가는 전류의 양을 계산하여 확인하고, 폐구간 내에서 모든 기전력의 합 E와 저항 등에 의한 전압 강하의 합하여 확인하였다. 이 값을 측정한 전류의 양과 비교함으로써 키르히호프의 법칙을 검증했다. 1. 키르히호프의 법칙 키르히호프의 법칙은 전기 회로 이해에 있어 매우 중요한 기본 원리입니다. 이 ...2025.01.05
-
휘스톤브릿지를 이용한 전기저항 측정2025.01.051. 휘스톤 브리지 휘스톤 브리지는 저항을 정밀하게 측정할 수 있도록 만들어진 장치입니다. 이 회로에서 전류는 위와 아래, 두 갈래로 나뉘어 흐르며, 전류계에 전류가 흐르지 않는 상황을 만들어 미지의 저항을 구할 수 있습니다. 이를 위해 옴의 법칙을 이용하여 식 (13-4)를 도출하였고, 저항선의 길이와 비저항을 고려한 식 (13-8)을 통해 미지 저항을 계산할 수 있습니다. 2. 전기저항 측정 이 실험에서는 휘스톤 브리지의 구조와 사용법을 익히고, 미지의 저항체의 전기저항을 측정하는 것이 목적입니다. 실험 과정에서는 미지 저항과 ...2025.01.05
-
전자회로설계실습 5번 결과보고서2025.01.201. BJT와 MOSFET을 사용한 구동회로 이번 실험에서는 BJT와 MOSFET을 이용하여 TTL 레벨이 전압(5V)으로 동작하는 RTL switch회로를 설계, 구현하여 relay, 또는 LED를 구동하고 그 동작을 측정, 평가하였습니다. 부하가 emitter에 연결된 LED구동회로, 부하가 BJTd 인버터에 연결된 LED구동회로, MOSFET를 이용한 LED구동회로 등 3가지 회로를 구현하고 각 회로의 동작을 분석하였습니다. 회로 구현 과정에서 발생한 오차와 그 원인을 분석하였으며, MOSFET의 동작 원리와 RG의 역할 등을...2025.01.20
-
[A+]건국대 전기전자기초실험1 3주차 결과보고서2025.01.151. 온도에 따른 전기저항의 변화 본 실험에서는 온도에 따라 전기저항의 크기가 변화하는 것을 실험적으로 확인하고자 한다. 입력 전압이 증가하면 전류도 증가할 것이며 이에 따라 저항이 변화한다. 이러한 현상은 온도와 관련이 있다. 대부분의 물질은 온도가 상승함에 전기 저항이 증가한다. 따라서 주어진 전압 또는 전류에서 저항이 온도에 따라 변화한다. 2. 등가저항을 이용한 등가회로 본 실험에서는 여러 개의 저항으로 이루어진 회로의 등가저항을 이론적으로 계산하고 실제 회로의 간략화된 등가회로를 구성하여 그 차이점을 실험적으로 알아보고 원...2025.01.15
-
전기회로설계 및 실습_설계 실습4. Thevenin 등가회로 설계_결과보고서2025.01.211. Thevenin 등가회로 Thevenin 등가회로는 복잡한 회로를 간단하게 바꾼 회로이다. Thevenin 등가회로는 복잡한 회로를 해석할 때, 매우 유용하게 사용된다. 이러한 회로를 직접 설계하고 실험값을 측정하고 원본 회로의 측정값과 원본 회로를 Thevenin 등가회로로 바꾸었을 때, 이론값과 비교하고 분석한다. 2. 전압 및 전류 측정 330 Ω에 걸리는 전압은 0.326V이고, 전류는 옴의 법칙에 의해 계산된 값과 1% 미만의 오차를 보였다. 가변저항을 이용하여 저항 값을 1.08 kΩ으로 설정하고 전압을 측정하면 0...2025.01.21
-
중앙대학교 전기회로설계실습 7. RC회로의 시정수 측정회로 및 방법 설계(예비) A+2025.01.271. DMM의 내부저항 측정 DMM의 내부저항을 측정하는 방법을 설계하여 제출하라. 1) DMM의 측정단위를 Ω으로 맞춘다. 2) DMM의 측정치를 10 Ω보다 크게 맞추고, 임의의 수십[MΩ] 정도의 저항의 저항값을 측정한다. 3) DMM의 측정단위를 Vdc로 바꾼다. 4) DC Power Supply 와 임의의 저항, DMM을 연결한다. 5) DMM에서 측정되는 전압을 통해 DMM의 내부저항을 구한다. 2. RC time constant 측정 DMM의 내부저항과 2.2 μF의 커패시터를 이용하여 RC time constant를 ...2025.01.27
-
연세대 23-2 기초아날로그실험 A+3주차 결과보고서2025.01.041. 디지털 멀티미터 기능 실험에서 myDAQ의 디지털 멀티미터 기능을 활용하여 각 노드에 걸리는 저항, 등가 저항, 전류 등을 측정하였습니다. 이를 통해 회로의 특성을 분석할 수 있었습니다. 2. 회로 구현 실험에서 제시된 회로도를 bread board에 구현하였습니다. myDAQ의 +15V 포트와 GROUND 포트를 bread board에 연결하고, 1kΩ 저항 6개를 사용하여 회로를 구성하였습니다. 3. 저항 측정 각 노드 사이의 저항을 측정하였습니다. 이론값과 실측값을 비교하여 회로의 특성을 분석하였습니다. 또한 등가 저항과...2025.01.04