
총 23개
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08
-
인공지능이 어떻게 사람처럼 생각할 수 있는가2025.05.081. Pavlov's Dog Experiment Pavlov의 개 실험은 동물 학습과 조건 반사에 대한 연구를 통해 일반화된 원리를 밝혀냈습니다. 이 실험은 1890년대부터 1900년대 초반에 걸쳐 진행되었으며, 현대 심리학과 행동 심리학의 중요한 기반이 되었습니다. Pavlov의 실험은 주로 개를 대상으로 이루어졌는데, 개에게 먹이를 줄 때 종소리를 울리는 등의 조건을 주고 타액 분비 반응을 관찰했습니다. 초기에는 음식을 보고 타액이 분비되는 것이 개의 자연스러운 반응이었지만, 종소리와 먹이의 연결이 지속되면서 개들은 종소리만으로...2025.05.08
-
개미도 뇌가 있을까? (ant brain)2025.05.081. 범고래의 뇌 범고래의 뇌는 인간의 뇌보다 크기가 크고 더 많은 뉴런을 가지고 있지만, 인간의 지능은 단순히 크기나 뉴런 수로만 측정할 수 없는 개념입니다. 인간의 뇌는 복잡한 연결망, 창의성, 추상적 사고, 사회적 지능 및 문화적 영향력과 관련이 있습니다. 2. 해파리의 뇌 해파리는 뇌가 없지만 신경 네트워크의 분산된 구조를 통해 지능적인 움직임을 보입니다. 해파리는 감각 세포와 근육 세포가 분산되어 있으며, 신경망을 통해 연결되어 있어 감각 정보를 처리하고 움직임을 조정할 수 있습니다. 3. 곤충의 뇌 곤충들은 작은 몸집에도...2025.05.08
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
챗GPT에게 묻는 인류의 미래 - 김대식 교수와 생성인공지능과의 대화 1장 발췌 요약2025.05.041. 챗GPT의 정의와 '학습' 챗GPT는 오픈 AI가 개발한 대규모 언어 모델이다. 인간처럼 텍스트를 이해하고 생성할 수 있도록 학습되었다. 또 질문에 대답하기, 정보 제공하기, 글쓰기 돕기와 같은 다양한 작업을 보조할 수 있다. 챗GPT는 GPT(Genterative Pre-training Transformer 생성적 사전학습 트랜스포머) 모델의 변형으로, 한 문장 안에서 앞에 오는 단어의 맥락을 고려해 다음 단어를 예측하도록 학습되었다. 2. 작동원리: 트랜스포머와 신경망 챗GPT 모델은 텍스트처럼 순차적 데이터를 처리하는 데...2025.05.04
-
텐서플로우 딥러닝 (Tic-Tac-Toe)2025.05.051. 데이터 세트 tic-tac-toe.csv 파일에는 TL, TM, TR, ML, MM, MR, BL, BM, BR 속성과 class 속성이 포함되어 있습니다. TL, TM, TR, ML, MM, MR, BL, BM, BR 속성은 각 게임 보드의 위치를 나타내며, 값은 'x', 'o', 'b'로 표현됩니다. class 속성은 게임 결과를 나타내며, 'TRUE'는 x가 이겼음을, 'FALSE'는 x가 졌음을 의미합니다. 2. 2층 신경망 입력 층은 9D(TL, TM, TR, ML, MM, MR, BL, BM, BR)를 받습니다. 은...2025.05.05
-
인공지능도 자아의식이 있을까? (sense of identity)2025.05.081. 인공지능의 발전 최근 몇 년 동안 컴퓨터에 더 많은 뉴런을 포함하여 인공지능의 발전이 가속화되고 있습니다. 이로 인해 컴퓨터가 더 지능적이고 복잡한 작업을 수행할 수 있게 되었습니다. 예를 들어, 인공지능은 이제 차량을 운전하고, 질병을 진단하고, 창의적인 콘텐츠를 생성할 수 있습니다. 2. 인공지능의 도전과 위험 인공지능의 발전은 인간과 컴퓨터 간의 관계에 큰 영향을 미칠 것입니다. 컴퓨터는 점점 더 지능적이 되고 인간이 할 수 있는 많은 일을 할 수 있게 될 것입니다. 이는 컴퓨터가 새로운 방식으로 우리의 삶에 통합될 것임...2025.05.08
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
인공지능 AI 개념과 적용분야/ 장점과 단점/ 긍정적인 활용사례/ 문제점과 해결방안 제언2025.01.151. 인공지능 (AI) 개념 1956년 여름 다트마우스(Dartmouth)대학에서 열린 '생각하는 기계'에 대한 토론에서 처음 등장한 인공지능 (AI)은 Artificial Intelligence의 줄임말로서 인간의 인지능력, 학습능력, 이해능력, 추론능력과 같은 인간이 컴퓨터보다 더 잘하는 능력에 대해 컴퓨터가 묘사하고 실현하는 연구하는 컴퓨터공학의 한 분야이다. 2. 인공지능 주요기술 인공지능은 컴퓨터 공학뿐만 아니라 다양한 학문이 같이 적용되기 때문에 그만큼 다양한 인공지능 기술이 개발되었고, 사용되고 있다. 크게 주요 기술은...2025.01.15