
총 49개
-
인공지능 기반 효소 예측 기술 DeepEC2025.01.031. 열화학 반응과 반응엔탈피 열화학 반응은 열을 에너지 원천으로 하여 진행되는 반응으로, 발열 반응과 흡열 반응으로 구분된다. 반응엔탈피는 생성물질의 엔탈피에서 반응물질의 엔탈피를 뺀 값으로, 반응의 방향과 정도를 나타낸다. 2. 효소 효소는 세포의 생화학반응을 촉진하는 단백질 촉매로, 기질과 결합하여 효소-기질 복합체를 형성함으로써 화학 반응의 활성화 에너지를 낮추어 반응 속도를 증가시킨다. 효소는 열화학 반응에 관여하지만 반응 엔탈피를 유발하지는 않는다. 3. 합성곱 신경망 합성곱 신경망은 시각적 영상을 분석하는 데 사용되는 ...2025.01.03
-
mRNA 백신 개발을 위한 기초연구로 2023년 노벨상을 받은 커리코와 와이스만 두 사람의 연구와 그 응용 성과2025.01.261. mRNA의 안정성 증가 커털린 커리코와 드루 와이스만은 mRNA의 특정 염기를 변형하는 핵산 염기 변형 기술을 개발했다. 이 기술은 mRNA 분자가 세포 내에서 더 오랜 시간 동안 분해되지 않고 유지될 수 있도록 안정성을 크게 높였다. 변형된 mRNA는 단백질 생성 효율을 극대화하며, 이를 통해 면역 반응을 충분히 자극할 수 있는 백신의 기초가 되었다. 이 기술은 코로나19 백신을 비롯한 다양한 감염병 백신 개발에 적용되고 있으며, 암, 유전 질환, 심혈관 질환 등 다양한 치료 분야에서 새로운 가능성을 열고 있다. 2. mRN...2025.01.26
-
mRNA 백신 개발을 위한 기초연구로 2023년 노벨상을 받은 커리코와 와이스만 두 사람의 연구와 그 응용 성과2025.01.261. mRNA의 발견과 가능성 탐구 커리코와 와이스만의 연구는 mRNA, 즉 메신저 RNA의 역할에 대한 탐구에서 시작되었다. mRNA는 DNA에서 유전 정보를 복사해 단백질을 합성하는 중요한 매개체로, 모든 생명체에서 필수적인 분자다. 하지만 20세기 후반까지 mRNA는 백신 개발에 적용될 수 있는 대상으로 주목받지 못했다. 당시 대부분의 연구는 단백질이나 병원체를 직접 이용하는 백신 개발에 집중되어 있었다. 그러나 커리코는 mRNA가 특정 단백질을 합성할 수 있다는 점에서 백신 개발에 잠재력이 있음을 깨닫고, 이를 활용한 새로운...2025.01.26
-
생명공학의 최전선: 유전자 편집과 GMO 논쟁에서 디자이너 베이비와 유전질환 치료까지2025.01.261. 생명공학 기술의 발전과 유전자 편집의 의미 생명공학의 핵심 기술 중 하나인 유전자 편집 기술은 단백질, 유전자, mRNA, CRISPR와 같은 생명 구성 요소들을 조작함으로써 생명체의 특성을 변화시키는 방법이다. CRISPR 기술은 정확하고 빠른 유전자 편집이 가능하다는 장점이 있어, 현재 가장 많이 연구되고 있는 분야 중 하나이며, 이를 통해 과거에는 불가능했던 유전적 질환 치료 및 특정 유전자의 변형이 가능해졌다. 2. 생명공학과 환경 및 식품 산업 유전자 편집 기술은 식품과 환경에서도 광범위하게 활용되고 있다. 농업 분야...2025.01.26
-
크로마토그래피에 의한 단백질 정제 탐구2025.01.291. 단백질 정제 단백질 정제는 정제된 단백질을 분리하고 얻는 과정이다. 유전자 재조합 이후, 단백질 발현 과정을 거쳐 단백질 정제 단계에서 단백질을 정제할 수 있는 다양한 크로마토그래피 기법이 있다. 이러한 기술을 통해 특정 단백질을 정밀하게 분리할 수 있으며 바이오 의약품, 생명공학 및 기초 연구 분야에 적용하여 활용될 수 있다. 2. 크로마토그래피 기법 크로마토그래피는 단백질 정제에 사용되는 다목적 기술로, 전하 기반 분리를 위한 이온 교환, 특정 결합 상호작용을 활용한 친화성, 크기 기반 분리를 위한 크기 배제가 포함된다. ...2025.01.29
-
인간 게놈 프로젝트와 유전병 치료2025.01.291. 인간 게놈 프로젝트 인간 게놈 프로젝트는 인간 DNA를 구성하는 약 30억 쌍의 뉴클레오타이드 염기쌍을 염기 서열화하는 것을 목적으로 진행되었다. 현재 인간 유전자는 약 20,000개에서 25,000개 정도가 있다고 밝혀졌으며, 이 정보를 활용하여 질병 유전자를 확인하고, 유전 질환에 대한 검사와 치료법을 개발할 수 있게 되었다. 2. 계층별 염기 서열법 계층별 염기 서열법은 인간의 염색체를 토막내어 약 200킬로 염기쌍 크기로 벡터에 저장한 게놈 도서관을 만들고, 서로 중복되는 클론들을 찾아내어 배열하는 방식이다. 이 방법의...2025.01.29
-
혁신기술 도입과 멋진 신세계의 디스토피아 반대론2025.01.041. 혁신기술 도입에 대한 찬성론 나는 혁신기술 도입에 적극적으로 찬성하는 입장이다. 혁신기술은 미래를 더욱 윤택하게 해줄 것이라고 믿기 때문이다. 예를 들어 인공지능을 활용한 피부암 진단 기술은 의사보다 더 정확하게 양성 종양과 악성 종양을 구분할 수 있다. 또한 인공지능을 활용하면 신약 개발 기간을 단축하고 비용을 절감할 수 있다. 이처럼 혁신기술은 인간의 능력을 보완하고 향상시켜 삶의 질을 높일 수 있다. 물론 혁신기술에 따른 윤리적 부작용도 있겠지만, 균형을 유지하며 기술이 발전해 나갈 것으로 믿는다. 2. <멋진 신세계>의...2025.01.04
-
AI 기반 효소 예측 기술 DeepEC 발표2025.01.031. AI 합성곱 신경망 합성곱 신경망(Convolutional Neural Network, CNN)은 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류입니다. CNN은 원본 이미지를 단순화, 변형, 샘플링하는 과정을 통해 효과적으로 이미지 특징을 추출할 수 있습니다. 2. 효소 예측 기술 'DeepEC' DeepEC은 4개의 EC 번호와 138만 8,606개의 단백질 서열 빅데이터를 학습한 딥러닝 기술입니다. 3개의 CNN을 주요 예측 기술로 사용하여 EC 번호를 예측하며, 예측에 실패할 경우 서열 ...2025.01.03
-
20세기 초 스페인 독감과 현재 COVID-19 대유행의 차이2025.01.251. 스페인 독감과 COVID-19의 전염병 확산 차이 스페인 독감은 세계 1차 대전 당시 빠르게 확산되었고, 약 5억 명이 감염되었다. COVID-19도 빠르게 전 세계로 퍼져나갔으며, 약 6억 9천만 명이 감염되었다. 두 전염병 모두 빠른 확산 속도를 보였지만, 당시 전쟁 상황과 언론 통제로 인해 스페인 독감의 확산이 더 빨랐다. 2. 스페인 독감과 COVID-19의 사망자 수 차이 스페인 독감은 최소 1700만 명에서 최대 5000만 명의 사망자가 발생했다. 반면 COVID-19는 2023년 10월 기준 690만 명의 사망자가...2025.01.25
-
실험실습보고서_크로마토그래피, 색소 분리 및 흡광도 분석2025.01.091. 역상 크로마토그래피 고정상의 극성이 낮고 이동상의 극성의 높은 조건에서의 분리로 소수성이 높은 물질일수록 강하게 흡착되어 안에 머무는 시간이 길다. 소수성 작용기와 용질의 소수성 부분이 만나 작용하는 원리로 이번 실험에서는 C18을 고정상으로, 이동상을 3DW와 94%에탄올을 사용하여 용해도 차이에 의해 Erioglaucine disodium salt와 Sunset Yellow FCF 혼합 용액을 분리한다. 2. 흡광광도법 빛의 특정파장을 이용하는 방법으로, 쏜 Light source와 투과된 양의 차이로 흡광도를 계산한다. ...2025.01.09