총 87개
-
4차 산업혁명과 알고리즘(수학)2025.01.171. 4차 산업혁명 최근 인공지능 분야에 놀라운 성과가 나타나면서 인공지능은 미래의 일이 아니라 현실이 되고 있다. 그것은 빅데이터의 출현과 기계 스스로가 학습할 수 있는 '딥러닝(deep learning)'이라는 알고리즘의 개발 덕분이다. 알고리즘은 제 4차 산업혁명의 기초 작업으로 작용하고 있으며, 알고리즘을 안다는 것은 제 4차 산업혁명에 관한 이해도를 높이는 데 도움이 될 것이다. 2. 알고리즘 알고리즘이란 컴퓨터에서 쓰이는 용어로 어떤 문제의 해결을 위하여, 입력된 자료를 토대로 하여 원하는 출력을 유도하여 내는 규칙의 집...2025.01.17
-
영화 '머니볼'을 통해 본 일상생활에서의 통계학 적용2025.01.041. 통계학 통계학은 다양한 분야에서 활용되며, 기상예측, 선거 분석, 기업의 의사결정 등에 활용된다. 통계학은 수학적 분석을 통해 현상을 객관적으로 이해하고 예측할 수 있게 해준다. 또한 데이터 분석을 통해 소비자 니즈를 파악하고 만족도를 높이는 데 기여한다. 2. 일상 생활 속 통계학 적용 일상생활에서 통계학은 의견의 대표성 판단, 6시그마 기법을 통한 품질 관리, 빅데이터 분석 등에 활용된다. 통계학 지식을 바탕으로 데이터를 분석하면 일상에서 접하는 정보를 다양한 관점에서 해석할 수 있다. 통계학은 4차 산업혁명 시대의 데이터...2025.01.04
-
AI의 등장과 영향, 산업 분야별 적용 사례 및 전망2025.05.161. 새로운 산업 혁명, AI의 시작 ChatGPT는 인간과 유사한 텍스트를 생성하고 광범위한 질문에 높은 정확도로 응답할 수 있다는 점에서 호평을 받고 있습니다. 의료, 금융, 고객 서비스를 포함한 많은 산업은 다양한 프로세스를 자동화할 수 있고 개선할 수 있는 잠재력에 의해 ChatGPT를 채택하기 시작했습니다. 2. 생성형 AI 생성형 AI란 머신러닝 알고리즘을 통해 학습 데이터를 기반으로 새로운 콘텐츠를 만드는 기술입니다. 이 생성형 AI가 바로 ChatGPT입니다. 머신러닝은 컴퓨터가 주어진 데이터로부터 자체 학습을 하여 ...2025.05.16
-
머신러닝 출석수업 만점 과제2025.01.251. 머신러닝 머신러닝은 인공지능의 한 분야로, 데이터를 이용하여 알고리즘을 학습시켜 문제를 해결하는 기술입니다. 이 과제는 머신러닝 수업의 출석수업 과제물로, 코드 작성과 컴파일 결과를 포함하고 있습니다. 1. 머신러닝 머신러닝은 인공지능 기술의 핵심 분야로, 데이터를 기반으로 학습하고 예측하는 능력을 갖추고 있습니다. 이를 통해 다양한 분야에서 효율적이고 정확한 의사결정을 내릴 수 있습니다. 특히 의료, 금융, 제조업 등 많은 산업 분야에서 머신러닝 기술이 활용되고 있으며, 앞으로도 그 활용 범위가 더욱 확대될 것으로 예상됩니다...2025.01.25
-
인공지능의 개념과 기술 그리고 활용사례2025.01.021. 인공지능의 개념 인공지능은 기계가 인간의 지능을 모방하거나 구현하는 기술을 의미합니다. 이는 문제 해결, 학습, 추론, 자연어 이해 등의 인간의 지능적인 능력을 컴퓨터 프로그램이나 기계가 수행할 수 있도록 하는 분야를 포함합니다. 강한 인공지능은 인간과 동등한 지능을 가진 인공 시스템을 의미하며, 약한 인공지능은 특정한 작업이나 문제 해결에 특화된 인공 시스템을 의미합니다. 2. 인공지능의 주요 기술 인공지능의 주요 기술에는 머신러닝, 딥러닝, 자연어 처리가 있습니다. 머신러닝은 데이터에서 학습하고 패턴을 인식하여 결정을 내리...2025.01.02
-
웹 개발과 사용자 경험2025.05.131. 사용자 중심 디자인 사용자의 요구와 기대를 충족시키기 위한 사용자 중심 디자인 방법론은 웹 개발에서 매우 중요한 역할을 합니다. 이를 통해 사용자의 만족도와 충성도를 높이고, 제품의 사용성을 향상시킬 수 있습니다. 사용자 테스트, 프로토타이핑, 반복적 설계 과정 등이 핵심적인 접근법이 되고 있습니다. 2. 인공지능과 머신러닝 사용자 경험을 최적화하기 위해 인공지능(AI)과 머신러닝(ML) 기술이 활용되고 있습니다. 사용자의 행동 패턴을 분석하고 예측하여 개인화된 서비스를 제공하는 등 이러한 기술은 사용자 경험 향상에 기여하고 ...2025.05.13
-
대학 부설 한국어 어학당을 AI로 분석 적용(인공지능과 데이터마이닝 과제)2025.05.141. 어학연수생 유치 예측 마케팅 기술을 활용하여 과거 10년간의 모집 인원 데이터를 분석하고 국가별, 지역별, 성별, 연령별, 성취도, 모집기관별 등의 데이터를 활용한 CRM 데이터를 구축할 수 있습니다. 이를 통해 시기에 맞는 맞춤형 마케팅 정보를 제공할 수 있습니다. 또한 모집 프로세스에 AI를 도입하여 서류 검토, AI 인터뷰, 챗봇 상담 등을 자동화함으로써 업무 프로세스를 개선하고 효율성을 높일 수 있습니다. 2. 교육시스템 개선 AI 학습 플랫폼을 개발하여 학생들이 본국에서 입국 전부터 사전 학습을 할 수 있도록 하고, ...2025.05.14
-
[경영정보시스템] 4차 산업혁명과 관련된 정보기술인 빅데이터에 대한 개념과 특성, 빅데이터를 활용한 기술을 조사하고, 기업에서 빅데이터를 어떻게 활용하고 있는지를 서술하시오. 또한 빅데이터 기술로 인해 발생할 문제점을 예측하고 이에 개인과 기업이 각각 어떻게 대응할 수 있을지를 서술하세요.2025.01.231. 빅데이터의 개념과 특성 빅데이터는 전통적인 데이터 처리 방식으로는 감당하기 어려운 방대한 양의 데이터 집합을 의미한다. 이러한 데이터는 양(Volume), 속도(Velocity), 다양성(Variety), 정확성(Veracity), 가치(Value)의 5가지 특성을 가지고 있으며, 이를 효율적으로 처리하고 분석하여 유의미한 정보를 도출하는 것이 빅데이터 기술의 핵심이다. 빅데이터는 기업의 의사결정에 필요한 근거를 제공하고, 새로운 비즈니스 기회를 발굴하며, 고객의 행동을 예측하는 등 다양한 활용 가능성을 가지고 있다. 2. 빅...2025.01.23
-
스마트폰을 이용한 음식물 인식 및 칼로리 분석 애플리케이션 개발2025.01.231. 패턴인식 시스템의 구성요소와 처리 절차 패턴인식 시스템은 데이터로부터 유의미한 패턴을 인식하고 분류하는 기술로, 데이터 수집, 전처리, 특징 추출, 분류기 설계, 결과 해석의 다섯 가지 주요 구성 요소로 이루어진다. 이러한 구성 요소와 처리 절차는 음식물 인식 및 칼로리 분석 애플리케이션 개발에 필수적인 기반을 제공한다. 2. 음식물 인식 애플리케이션 개발 시 고려사항 음식물 인식 및 칼로리 분석 애플리케이션 개발 시 고려해야 할 사항으로는 높은 인식 정확도, 사용자 친화적인 인터페이스, 데이터 보안과 프라이버시, 다양한 음식...2025.01.23
-
머신 러닝 학습을 위한 데이터 증량하기2025.05.081. 데이터 증강 데이터 증강(Data Augmentation)은 현대 머신러닝과 딥러닝 분야에서 핵심 개념이 되었습니다. 데이터의 양과 질은 모델의 성능과 일반화 능력에 큰 영향을 미치지만, 현실적인 제약으로 인해 충분한 양의 고품질 데이터를 수집하기 어려운 문제를 해결하기 위해 데이터 증강이 등장하였습니다. 데이터 증강은 기존의 데이터를 변형하여 새로운 데이터를 생성하는 과정으로, 모델의 학습과 예측 능력을 향상시킬 수 있습니다. 2. 데이터 증강 기법 다양한 데이터 증강 기법이 개발되어 있으며, 이를 통해 다양한 유형의 데이터...2025.05.08