
총 87개
-
성균관대 디지털플랫폼경영(Platform Business in Digital Economy) 교안 요약2025.01.201. 플랫폼 비즈니스 플랫폼은 외부 생산자와 소비자 간의 가치 창출 상호작용을 가능하게 하는 것으로, 다양한 선택, 검색, 시간 절약, 리뷰를 통한 정보 제공 등의 기능을 제공하여 비선형적인 효용과 가치 증대를 가져온다. 플랫폼의 주요 역할은 사용자 유치, 매칭, 거래 촉진이며, 이를 통해 네트워크 효과와 자체 가치를 창출한다. 2. 플랫폼 유형 플랫폼은 거래 플랫폼과 혁신 플랫폼으로 구분된다. 거래 플랫폼은 사용자 간 직접 거래를 중개하며, 혁신 플랫폼은 보완재 개발을 촉진한다. 플랫폼의 성공을 위해서는 적절한 시기 진입, 교차 ...2025.01.20
-
스마트기술을 활용한 유지관리 인공지능, 머신러닝, 딥러닝 기술의 차이점2025.01.031. 인공지능 인공지능은 인간의 학습 능력과 추론 능력, 지각 능력 등을 컴퓨터 프로그램으로 실현한 기술을 말한다. 대표적인 인공지능 서비스로는 2018년에 SKT에서 출시한 AI 상담원 채티가 있다. 2. 머신러닝 머신러닝은 인공지능을 발전시키기 위해서 기계를 학습시키는 다양한 방법에 대한 학문이다. 대표적인 머신러닝 기술이 적용된 제품으로는 ADT 캡스가 2020년에 출시한 얼굴인식기를 통해 신분을 확인하는 '캡스 스마트패스'가 있다. 3. 딥러닝 딥러닝은 머신러닝보다 더 작은 개념으로 '신경망'을 통해서 인공지능을 만드는 머신...2025.01.03
-
머신러닝 출석수업 만점 과제2025.01.251. 머신러닝 머신러닝은 인공지능의 한 분야로, 데이터를 이용하여 알고리즘을 학습시켜 문제를 해결하는 기술입니다. 이 과제는 머신러닝 수업의 출석수업 과제물로, 코드 작성과 컴파일 결과를 포함하고 있습니다. 1. 머신러닝 머신러닝은 인공지능 기술의 핵심 분야로, 데이터를 기반으로 학습하고 예측하는 능력을 갖추고 있습니다. 이를 통해 다양한 분야에서 효율적이고 정확한 의사결정을 내릴 수 있습니다. 특히 의료, 금융, 제조업 등 많은 산업 분야에서 머신러닝 기술이 활용되고 있으며, 앞으로도 그 활용 범위가 더욱 확대될 것으로 예상됩니다...2025.01.25
-
우리 주변 머신러닝의 대표적인 혁신(편리성 등) 사례 연구2025.01.181. 문화공간과 전시관의 머신러닝 활용 문화공간과 전시관에서는 머신러닝을 활용한 관람객 맞춤형 서비스가 도입되고 있습니다. 예를 들어, 런던의 대영박물관은 머신러닝을 통해 방문객의 관심사를 분석하고, 맞춤형 투어 경로를 제공합니다. 이를 통해 관람객은 자신이 선호하는 전시물에 집중할 수 있으며, 보다 풍부한 관람 경험을 얻을 수 있습니다. 2. 매장 디스플레이에서의 머신러닝 활용 소매업체들은 머신러닝을 활용하여 고객의 구매 패턴을 분석하고, 이에 맞춰 매장 디스플레이를 최적화합니다. 예를 들어, 아마존 고(Amazon Go) 매장은...2025.01.18
-
인공지능의 개념과 기술 그리고 활용사례2025.01.091. 인공지능의 개념 인공지능은 인간의 학습, 추론, 문제 해결 등의 능력을 컴퓨터 프로그램이나 시스템을 통해 모방하거나 수행하는 기술을 의미합니다. 인공지능의 주요 특징 중 하나는 기계가 데이터를 학습하고 경험을 쌓아 나가는 능력을 가지고 있다는 것입니다. 이를 통해 기계는 문제를 해결하거나 패턴을 파악할 수 있으며, 인간의 학습과정을 모방하여 새로운 상황에 대처할 수 있게 됩니다. 2. 머신러닝과 딥러닝 머신러닝은 데이터를 기반으로 컴퓨터 시스템이 학습하고 예측을 수행하는 기술이며, 지도 학습, 비지도 학습, 강화 학습 등의 방...2025.01.09
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
인공지능 ) 1. 역전파와 순전파에 대해서 설명 2. 손실함수는 어떤 특성을 갖는가 3. 옵티마이저가 무엇인지 설명 4. 위의 4가지의 연관관계를 5줄 이내로 설명2025.01.191. 역전파와 순전파 역전파와 순전파는 딥러닝, 머신러닝 등에서 학습하는 방법을 의미한다. 인공지능 모델은 필연적으로 학습을 진행하게 되는데, 이때 학습의 방향이 앞에서 뒤로 순차적으로 진행되는 학습을 순전파, 뒤에서 앞으로 학습이 진행되는 것을 역전파라고 한다. 2. 손실함수의 특성 손실함수는 학습을 위한 알고리즘이 실제와 얼마나 차이가 나는지, 오류를 판단하기 위한 함수로써 여겨진다. 학습을 기반으로 나온 데이터와 실제데이터 간의 오차를 직접적으로 계산하여 인공지능 모델의 최적화를 위한 가장 중요한 지표로써 간주한다. 3. 옵티...2025.01.19
-
데이터 사이언티스트 - 21세기 최고의 직업2025.01.191. 데이터 사이언티스트의 정의와 필요성 21세기 들어 정보와 데이터의 중요성이 급격히 증가했으며, 기업과 정부, 연구기관 등 다양한 분야에서 데이터의 수집과 분석을 통해 새로운 가치를 창출하고 있다. 이 과정에서 핵심적인 역할을 하는 직업이 바로 데이터 사이언티스트이다. 데이터 사이언티스트는 통계학자와 데이터 엔지니어와 구분되는 독특한 역할을 한다. 2. 데이터 사이언티스트의 매력과 인기도 데이터 사이언티스트 직업의 매력은 높은 수요와 보상, 다양한 산업에서의 활용, 기술 발전에 따른 지속적인 학습 기회, 사회적 가치 창출 등 다...2025.01.19
-
4차 산업혁명과 인공지능2025.04.261. 인공지능 인공지능은 기계로부터 만들어진 지능을 의미하며, 컴퓨터와 소프트웨어, 기계를 통해 만들어진다. 인공지능에는 강 인공지능과 약 인공지능이 있는데, 강 인공지능은 인간처럼 자유로운 사고가 가능하고 프로그램에 의해 자아를 가지고 있는 반면, 약 인공지능은 자의식이 결여되어 특정 분야에 선택적으로 개발되어 생산성을 높이고 인간의 한계를 극복하기 위해 만들어진다. 또한 인공지능에는 머신러닝과 딥러닝이 있는데, 머신러닝은 다수의 사건경험을 가지고 패턴을 학습해 통계를 바탕으로 판단을 내리는 것이며, 딥러닝은 머신러닝의 발전된 형...2025.04.26
-
파이썬을 이용한 불법 사이트 탐지 및 차단2025.04.281. 불법 사이트 탐지 이 프로젝트는 파이썬을 사용하여 불법 사이트를 탐지하고 차단하는 기능을 제공합니다. 주요 기능으로는 구글 검색을 통해 불법 사이트 URL을 추출하고, 이를 hosts 파일에 차단하는 것입니다. 또한 머신러닝 기술을 활용하여 URL의 악성 여부를 판단하고, meta 태그의 키워드 필터링을 통해 유해 사이트를 탐지하는 기능을 포함하고 있습니다. 2. 구글 검색 및 URL 추출 이 프로젝트는 구글 검색을 통해 불법 사이트 URL을 추출하는 기능을 제공합니다. 특정 키워드로 구글 검색을 수행하고, 검색 결과에서 불법...2025.04.28