
총 16개
-
초음파 SPI 원리 초음파 물리22025.05.091. 초음파 시스템 구성요소 초음파 시스템의 주요 구성요소는 펄서, 빔포머, 트랜스듀서, 수신기, 메모리, 디스플레이입니다. 펄서는 전기 펄스를 생성하고, 빔포머는 트랜스듀서로 전기 펄스를 전송하며, 트랜스듀서는 전기 펄스를 기계적 진동으로 변환합니다. 수신기는 트랜스듀서에서 받은 전기 신호를 처리하고, 메모리/스캔 변환기는 디지털 신호를 저장하며, 디스플레이는 최종 영상을 출력합니다. 2. 아날로그 신호와 디지털 신호 아날로그 신호는 최소값과 최대값 사이에서 연속적으로 변화하는 값을 가지지만, 디지털 신호는 고정된 단계 사이에서 ...2025.05.09
-
Multiplexer 가산-감산 예비보고서(고찰포함)A+2025.01.131. 멀티플렉서 멀티플렉서는 N개의 입력 데이터에서 1개의 입력만을 선택하여 단일 channel로 전송하는 것을 말하고, demultiplexer은 이와 반대의 동작을 한다. 멀티플렉서의 논리식은 Y=A⨁B = ĀB+AḆ로 디코더와 유사하다. 멀티플렉서는 데이터통신 시스템에서 특정의 데이터를 선정하기 위하여 사용할 수도 있으며 다수의 RAM이나 ROM을 이용하여 논리회로의 합성도 가능하다. 2. 전가산기 전가산기는 컴퓨터 내에서 2진 숫자(비트)를 덧셈하기 위한 논리 회로의 일종이다. 전가산기는 3개의 디지털 입력(비트)을 받고, ...2025.01.13
-
아날로그 신호와 디지털 신호의 차이점2025.01.271. 아날로그 신호의 정의 아날로그 신호는 연속적인 변화가 있는 신호 형태이다. 이는 시간의 흐름에 따라 변화하는 전압이나 전류로 나타나며, 무한한 값의 연속적인 변화를 통해 정보를 전달한다. 아날로그 신호는 모든 값이 가능한 연속적인 신호이므로 소리, 빛, 온도 등 자연적으로 존재하는 대부분의 물리적 신호를 그대로 전달하는 데 적합하다. 2. 디지털 신호의 정의 디지털 신호는 이산적인 값으로 표현되며, 주로 이진수인 0과 1의 조합으로 정보를 전달한다. 디지털 신호는 연속적인 변화를 가지지 않고 단계별로 구분된 상태만을 가지므로,...2025.01.27
-
디지털신호처리 3장. 스펙트럼의 표현 요약정리 및 문제풀이2025.05.131. 디지털신호처리 디지털신호처리는 아날로그 신호를 디지털 형태로 변환하여 처리하는 기술입니다. 이 장에서는 신호의 스펙트럼 표현에 대해 요약하고 문제를 풀이합니다. 스펙트럼은 신호의 주파수 성분을 나타내며, 이를 통해 신호의 특성을 분석할 수 있습니다. 2. 스펙트럼 스펙트럼은 신호의 주파수 성분을 나타내는 것으로, 신호의 주파수 특성을 분석하는 데 사용됩니다. 이 장에서는 스펙트럼의 표현 방법과 특성에 대해 다룹니다. 3. 주파수 분석 주파수 분석은 신호의 주파수 성분을 분석하는 것으로, 신호의 특성을 이해하는 데 중요한 역할을...2025.05.13
-
아날로그 신호와 디지털 신호의 차이점2025.01.151. 아날로그 신호 아날로그 신호는 시간에 따라 연속적으로 변화하는 전류 또는 전압을 다루는 신호입니다. 이는 전류나 전압의 미세한 변화에도 반응할 수 있는 특성을 가지고 있습니다. 아날로그 신호의 파형은 일정 기간 동안 계속 변화하는 연속파를 나타내며, 가장 기본적인 형태는 사인파입니다. 아날로그 신호의 예로는 자연적인 소리들, 온도, 빛의 밝기 등이 있습니다. 아날로그 신호는 진폭, 주기(또는 주파수), 위상으로 표현되며, 이러한 값들은 고정되어 있지 않아 노이즈에 취약한 특성을 가집니다. 2. 디지털 신호 디지털 신호는 데이터...2025.01.15
-
디지털통신시스템설계실습 4주차2025.05.091. 나이퀴스트 주파수 나이퀴스트 주파수는 원신호의 최대 주파수를 2배한 값으로, 이 이상의 주파수로 샘플링하면 원신호를 복원할 수 있다. 본 과제에서는 원신호의 최대 주파수가 4Hz이므로, 나이퀴스트 주파수는 8Hz이다. 2. 샘플링 주파수 나이퀴스트 주파수 이상으로 샘플링하면 원신호를 잘 복원할 수 있지만, 나이퀴스트 주파수 미만으로 샘플링하면 애리어싱이 발생하여 원신호의 정보가 손실된다. 따라서 샘플링 주파수는 나이퀴스트 주파수 이상으로 설정해야 한다. 3. 시간영역 및 주파수영역 분석 시간영역에서는 원신호, 샘플링 신호, 복...2025.05.09
-
부산대 어드벤쳐디자인 1장 예비보고서2025.05.051. 마이크로프로세서와 마이크로컨트롤러의 차이 마이크로프로세서는 내부에 소량의 데이터를 임시 저장하는 레지스터, 명령어를 해석하여 레지스터나 연산장치를 제어하는 제어장치, 산술연산을 담당하며 제어장치의 제어를 받는 연산장치를 포함하여 연산에 특화된 기능을 갖는 장치이고 마이크로컨트롤러는 하나의 칩에 CPU, 메모리, 입출력장치가 통합되어있는 집적회로이다. 차이점으로는 마이크로프로세서는 컴퓨터 시스템의 핵심이고 마이크로컨트롤러는 임베디드 시스템의 핵심이라는 점, 마이크로 컨트롤러는 입출력 컴포넌트가 외부에 연결되어 회로가 복잡하지만 ...2025.05.05
-
A/D 변환기의 특징과 A/D 인터럽트 사용을 위한 초기화 과정 및 사용시 유의사항2025.01.031. A/D 변환기 특징 A/D 변환기는 10bit 분해능으로 아날로그 전압을 10bit의 디지털 수로 표시할 수 있다. 변환시간은 13-260us이며 단극성 입력 채널이 8개로 22종류의 차동 입력이 가능하다. 내부 기준 전압은 2.56V이며 포트 F를 통해 입력되고 멀티플렉서에 의해 A/D 변환기에 연결된다. A/D 변환 결과는 16bit로 A/D 변환기 데이터 레지스터에 저장된다. 2. A/D 인터럽트 사용을 위한 초기화 과정 A/D 인터럽트 사용을 위한 초기화 과정은 다음과 같다. 1) VREF 신호 결정, 2) A/D 변환...2025.01.03
-
디지털 신호와 아날로그 신호의 차이점에 대해 설명2025.01.171. 디지털 신호 디지털 신호는 이산적인 값을 가지는 신호로, 주로 0과 1의 이진수로 표현된다. 이러한 신호는 일정한 시간 간격으로 측정된 데이터를 기반으로 하며, 디지털 시스템 내에서 정보 처리가 이루어진다. 디지털 신호의 장점은 노이즈에 강하여 원래 신호를 정확하게 복원할 수 있는 노이즈 저항성, 데이터 압축을 통한 효율적인 데이터 관리, 다양한 디지털 장치를 통한 유연한 신호 처리 및 변환, 손상된 신호의 정확한 재생성, 암호화를 통한 보안 강화, 다양한 데이터 형태의 통합 전송 및 소프트웨어 업데이트를 통한 시스템 업그레이...2025.01.17
-
아날로그 신호와 디지털신호의 장단점에 대하여 자유롭게 논의해 보세요2025.05.061. 아날로그 신호 아날로그 신호는 연속적인 신호로, 모든 값에 대해 무한대의 가능한 값을 가집니다. 이는 아날로그 신호가 더욱 정확한 정보 전달을 가능하게 합니다. 또한, 아날로그 신호는 높은 주파수의 신호를 처리할 수 있습니다. 그러나, 아날로그 신호는 잡음이 발생하기 쉽고, 전송거리에 따라 신호의 질이 저하될 수 있습니다. 또한, 아날로그 신호를 디지털 신호로 변환하는 과정에서 데이터의 손실이 발생할 수 있습니다. 2. 디지털 신호 디지털 신호는 이산적인 신호로, 불연속적인 값만을 가집니다. 이는 디지털 신호가 아날로그 신호에...2025.05.06