
총 89개
-
10대 전략 기술 트렌드2025.05.151. 적응형 AI 적응형 AI 시스템은 새로운 데이터를 바탕으로 런타임과 개발 환경 내 모델을 지속적으로 재교육해 학습함에 따라 초기 개발 단계 당시 존재하지 않거나 예측 불가능한 실제 상황에서 변화가 일어나는 것에 빠르게 적응하는 것을 목표로 한다. 약한 인공지능과 강한 인공지능의 차이, 기계학습과 딥러닝 알고리즘의 개념과 특징, 국내 적용 상황 및 향후 전망 등을 다루고 있다. 2. 산업 클라우드 플랫폼 산업 클라우드 플랫폼은 SaaS, PaaS, IaaS를 통합해 특정 산업의 비즈니스 사용 사례를 지원하는 일련의 모듈식 기능을...2025.05.15
-
인공지능과 기계학습 중간정리2025.01.131. 예측자 예측자는 Y=AX의 관계가 선형일 때 사용된다. 예측자를 구하는 과정은 다음과 같다: 1) 임의의 값 A 설정 2) 주어진 데이터의 X를 대입하여 예측값 Y 출력 3) 목표값과 출력값을 비교하여 오차(error) 구하기 4) 오차가 양수인 경우 A를 늘려야 하며, 오버슈팅을 방지하기 위해 A를 조금씩만 조정해야 한다. 5) 이러한 과정을 반복(iteration)하여 A를 조정해나가는 것이 예측자 구하기의 핵심이다. 2. 분류자 분류자는 X·Y 평면에서 두 그룹을 분류하는 선형분류자를 말한다. 분류자 학습 과정은 다음과 ...2025.01.13
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 약한 인공지능 vs. 강한 인공지능 약한 인공지능은 특정 작업을 수행하는 데 초점을 둔 인공지능의 한 형태로, 사람의 도움 없이 특정 작업을 자동화하거나 입력된 데이터를 처리하여 응답을 생성하는 데 활용된다. 그러나 이러한 시스템은 제한된 범위 내에서만 작동한다. 강한 인공지능은 인간과 거의 동일한 지능과 사고 능력을 가지는 시스템을 의미하며, 다양한 영역에서 유연하게 작동할 수 있는 능력을 갖추고 있다. 현재까지 개발된 인공지능은 주로 약한 인공지능에 해당하며, 강한 인공지능은 아직 이론적인 수준에 머무르고 있다. 2. 기계...2025.01.18
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
갈수록 정보이론이 중요해지는 이유2025.05.101. 정보이론 정보이론은 정보의 전송, 저장, 처리에 관한 원리와 방법을 연구하는 학문으로, 우리가 일상에서 마주하는 다양한 형태의 정보를 효율적으로 다루는 데에 도움을 줍니다. 정보이론은 어떻게 하면 정보를 가장 효율적으로 전달하고 저장할 수 있는지, 그리고 정보의 손실 없이 전달할 수 있는 방법을 연구합니다. 2. 빅데이터 빅데이터 시대에는 정보의 양이 기하급수적으로 증가하고 있습니다. 이 때문에 정보를 효과적으로 다루기 위해서는 정보이론의 원리와 방법을 활용해야 합니다. 정보이론은 데이터 압축, 데이터 전송의 효율성, 정보의 ...2025.05.10
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
인공지능의 개념과 기술 그리고 활용사례2025.05.161. 약한 인공지능과 강한 인공지능 약한 AI는 인간의 전체적인 인지능력을 필요로 하지 않는 정도의 문제 해결과 추론을 할 소프트웨어의 구현 및 연구를 가르킨다. 반면 강한 AI는 인간의 지능을 가지고 생각을 할 수 있는 컴퓨터를 말한다. 강한 AI는 아직 연구와 신중한 개발이 진행 중이다. 2. 기계학습 기계학습은 컴퓨터 시스템이 데이터를 학습하고 패턴을 파악하여 결정을 내릴 수 있도록 하는 기술이다. 이는 예측, 분류, 군집 등의 작업에서 효과적으로 활용된다. 기계학습은 데이터의 양과 품질이 핵심적인 역할을 하며, 데이터의 수학...2025.05.16
-
인공지능의 개념과 기술 그리고 활용사례2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 특정 목적을 위해 개발된 인공지능으로, 스스로 인식할 수는 없지만 인공적인 기능을 만들어낼 수 있다. 반면 강한 인공지능은 스스로 인식하여 고도의 문제를 해결할 수 있는 지능을 만들어내는 것을 말한다. 현재 약한 인공지능은 많이 발전했지만 강한 인공지능의 발전은 미약한 상황이다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 프로그램이 데이터 처리 경험을 바탕으로 향상된 학습을 통해 정보 처리 능력을 향상시키는 기술이다. 정보 처리 능력을 향상시켜 방대한 데이터를 바탕으로 ...2025.05.13
-
인공지능 기반 스마트홈 자동화 솔루션 개발2025.01.041. 인공지능 기반 홈 자동화 시스템 개발 사용자의 생활 패턴, 행동 양식을 수집하고 분석하는 기계학습이 가능한 인공지능 모델을 개발해야 합니다. 또한 사용자의 자연어(대화)를 인식, 처리할 수 있는 딥러닝 기술도 필요합니다. 이를 통해 사용자의 욕구와 필요를 파악하고 스마트 기기를 자동으로 제어할 수 있는 홈 자동화 솔루션을 구현할 수 있습니다. 2. 스마트홈 사용자 인터페이스 개발 스마트홈 사업자는 다양한 스마트홈 기기들이 원활하게 연동되도록 지원하는 직관적이고 사용자친화적인 인터페이스를 구축해야 합니다. 사용자가 어플리케이션을...2025.01.04
-
딥러닝(Deep Learning) 기술의 활용 방안2025.05.101. 인공지능, 기계학습(Machine Learning), 딥러닝(Deep Learning)의 관계 인공지능의 영역 안에는 기계학습이 있고, 딥러닝은 기계학습의 한 분야이다. 최근 인공지능의 여러 기술 중에서도 기계학습의 딥러닝이 아주 놀랄만한 성과를 보여주고 있다. 2. 딥러닝 기술을 의료에 활용한 사례 또는 활용 방안 의료산업에서 딥러닝 기술이 적용되면서 매우 빠른 속도로 높은 정확도의 진단이 가능해지고 있다. 이를 활용하면 진단의 정확도는 높이면서도 투입되는 시간과 비용은 현저히 줄일 수 있다. 또한 개인에 최적화된 맞춤형케어...2025.05.10